Nuclear Astrophysics

Jeff Blackmon (LSU)

	1. Introduction, Formalism, Big Bang and H burning																
I H		2.	2. He burning, Heavy elements & s process												2 He		
L ³	Be	3. t	Ste	ellar	Exp	losic	ons					8	C	7	O	F	10 Ne
11 Na	12 Mg				•			•				13 Al	14 Si	15 P	18 S	17 Cl	18 Ar
13	20 Ca	21 SC	22 T	23 V	24 Cr	25 Mn	23 F@	27 C0	23 Ni	Cu Cu	³⁰ Zn	Si Ga	32 Ge	38 As	34 Se	35 Br	36 Kr
Rb	88 \$ 7	39 Y	40 Zr	41 ND	42 Mo	43) TC	44 Ru	45 Rh	46 Pđ	47 Ag	43 Cd	49 In	50 Sn	_{ର୍ଚୀ} Sb	52 Te	53	54 Xe
65 Cs	53 Ba	ன La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	73 Pt	79 Au	eo Hg	81 T	82 Pb	Bi	84 Po	At At	86 Rn
87 Fr	88 Ra	89 AC	104 Unq	105 Unp	108 Unh	107 Uns	108 Uno	103 Une	110 Unn								

Ce	50 Pr	Nd	61 Pm	62 Sm	Eu	64 Gd	65 To	66 Dy	67 HO	68 Er	60 Tm	70 Yb	71 Lu
Th	91 Pa	U	Np	⁹⁴ Pu	S5 Am	⁹³ Cm	87 B K	Ĉf Ĉf	S S S S S S S S S S S S S S S S S S S	100 Fm	101 Md	102 No	103 Lr

CNO Cycle ¹⁷F ¹⁸F 1 m Dominant source of energy generation in stars heavier than the ¹⁵O 16**O** 17**O** 2 m What is CNO contribution to energy production in the sun? Few%? ¹³N ¹⁴N 15N CNO abundances in sun uncertain 10 m Stellar photospheric metallicity disagrees with helioseismology 12**C** 13**C**

sun

٠

٠

٠

2 h

18**O**

Resonances are important

Can the sun synthesize heavier elements?

He burning & the "Hoyle" state

¹²C(α,γ)¹⁶O

- The ¹²C(α,γ)¹⁶O reaction rate fixes ratio of ¹²C/¹⁶O following helium burning
 - ➡ Abundance ratio of ¹²C/¹⁶O
- The ¹²C/¹⁶O ratio governs subsequent evolution of the star:
 - Size of Fe core & supernova dynamics

Subthreshold states influence \rightarrow uncertain interference with other states

 Contribution of both E1 and E2 contributions are important → need to measure angular distributions

¹²C(α,γ)¹⁶O

Inverse reaction studied from ¹⁶N beta-delayed alpha emission

- Pushing direct measurements to lower energies is crucial but challenging
- Use indirect techinques to study properties of subthreshold states

Sub-Coulomb alpha transfer determines alpha-like part of asymptotic wavefunction

AGB Stars – Fate for M < 8 M $_{\odot}$

Thermally unstable: mixing, convection, mass loss \rightarrow nebulae

$^{12}C(p,\gamma)^{13}N(\beta\nu)^{13}C(\alpha,n)^{16}O$

Neutrons drive synthesis of heavy elements

radius

 $^{22}Ne(\alpha,n)^{25}Mg$ Flash H envelope mixing ¹³C(α,n) ¹³C(α,n) Convective pocket He intershell CO core time

CASPAR (Compact Accelerator for Performing Astrophysical Research)

ACCELERATOR CAVERN

Sanford Underground Facility in Homestake Mine, South Dakota

High current JN accelerator

NIVERSITY OF

University Of Notre Dame South Dakota School of Mines and Technology Colorado School of Mines

Underground accelerator project DIANA for low energy studies

p, α, HI beams 100 x LUNA luminosity

High luminosity, low background experiments

Generally only one combination of protons and neutrons is stable for each A (smallest mass)

Slow neutron capture (s) process

- s process
 - Produces about half
 of matter that is
 heavier than iron
 - Series of slow neutron captures
 - Pattern of isotopes
 produced is
 generally well
 understood
 - > Most σ 's measured

(n,γ) cross sections for the s process

Some outstanding issues

- Influence of low-energy levels at low temp
- Direct capture near closed shells
- Effect of thermal excitations in stellar environmen
- Branch point isotopes
- Lighter elements "weak s process"

What can AGB stars produce?

Relative abundances of s process isotopes well understood Subtract s abundances from solar system to get remainder

Cartoon r process

> Free parameters n_n , kT, t

➢ freezeout relatively fast & decay back to stability

Most important: masses, t_{1/2}, and P_n

Synthesis of heavy elements

- s process
- r process
 - Produces about
 half of matter
 heavier than iron
 - High neutron flux
 - Reactions on unstable isotopes
 - Site unknown

r process in the early Galaxy

New observations of unmixed abundances early in the Galactic halo

r process, where? *Neutron star mergers?*

- 10 systems known in our Galaxy
- Believed to be origin of gamma-ray bursts
- Potentially explains dispersion in Eu
- High output in rare event
- Calculations produce a robust r process
- Huge uncertainties due to nuclear data

t-component

r process: masses and reaction rates

- Some (n,γ) capture rates are important
- Abundances are very sensitive to most atomic masses and becay properties
- Most mass models do not reliably extrapolate away from stability
- Need measurements of nuclear properties in neutron-rich nuclei

Atomic masses

About 2400 isotopes have measured masses

Penning Traps: In a Nutshell

Canadian Penning Trap Argonne National Laboratory ATLAS Accelerator Facility

Precision Mass Measurements

Many of the most neutron-rich nuclei produced at CARIBU have short half lives (≤ 150 ms) as well as small fission branches from ²⁵²Cf ($\leq 10^{-4}$ %)

Improvements in both CARIBU and the CPT systems are required to perform mass measurements of influential *r*-process nuclei to $\Delta m/m \le 10^{-7}$

National Superconducting Cyclotron Laboratory

TOF-Bρ Mass Measurements

Beta Decay Example: RIBF @ RIKEN

The r process

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

- On existing NSCL Site
- New gas stopping technology + post accelerator
- ➢ New Powerful driver LINAC
 → 200 MeV/u for U
 → 400 kW
- > 9/01/10 CD-1
 → \$614M TPC
 - → \$520 DOE
- > CD-4 ~FY2020
- Wide variety of intense beams at low energies
- First access to many of the r process isotopes
- Direct measurements of many reactions for the first time

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

