Nuclear Science in High Energy Density Plasmas

Carl Brune Ohio University, Athens Ohio

Outline

- Background and History
- National Ignition Facility
- Nuclear Diagnostics
 - Neutron detection
 - Prompt Gamma-ray studies
 - Radiochemistry (gas and solid collection)
- Nuclear Science in HED Plasmas:
 - Hydrogen and Helium Isotope Reactions
 - Neutron-Induced Reactions (e.g., capture)
 - Reactions on Excited States

National Ignition Facility – 2MJ laser-

(One NIF Laser (9.7kJ) and Target Set-Up (1 Shot every 8h))

NIF – Laser Bay 2

NIF – Chamber

NIF Background

- Groundbreaking for construction in 1997
- Cost: ~\$4B
- Dedication May 2009
- NIF can deliver 1.8 MJ of laser power to the target
 - OMEGA (LLE, Rochester NY), the previous record, can supply 40 kJ
- NIF may have the opportunity to achieve "IGNITION"
 - Releasing ~20 MJ of fusion energy (= ~5-kg TNT explosion)
- France: Laser Megajoule under construction
- Technology and Science:
 - Ignition
 - Intertial Fusion Energy
 - National Security
 - Basic Science (laser, plasma, nuclear, materials,...)

NIF is the culmination of a long line of glass laser systems developed at LLNL

30kJ UV

Main Focus to date is on Ignition

Thermonuclear energy created faster than it is lost

NIF, 2009

Nuclear Diagnostics

- An important application of nuclear physics
- Nuclear methods are critical for understanding what happens
- All reactions occur within ~100 ps
- Challenging electromagnetic environment
- New detection techniques must be used

NIF now has > 40 diagnostics (>12 nuclear) ≈40 nuclear scientists involved

Improvements made to the nuclear diagnostic suite facilitate new measurement capability have yielded unprecedented diagnosis of implosions

Diagnostic	Improvement	New capability
NToF	Low n scattering	Drift velocity of burning plasma
	Faster scintillator	Carbon scattering edges
	Faster recording	n-T and n-D scattering edges
GRH	Absolute calibration	Carbon ρr
γ reaction		
history	of 4.4 MeV line of C	total birth yield
NADS	19 detectors	Calibration using 2 shock system
Flange NADS		With NToF for ν _{drift} , ρr anisotropy
NAS	Multi-foil spec.	Finer neutron spectral measr.
	Smaller more	
MRS	uniform	Improved resolution and
	Foils sputtered on	High yield (>1E16) capability
	High z backing	
RadChem	SRC collection	Ability to catch fission fragments
Solid (SRC)	Gaseous collection	Both gaseous and solid
Gas (RAGS)	implemented	
,	CVD diamond close	Shock and compression nuclear
PTOF	to TCC	bang times
WRF	More locations	Shock rhoR asymmetry
	More sophisticated	
N Imaging	algorithms	Better images

New NTOF detector design has replaced all 20 meter neutron spectroscopic detectors

- 4 PMT system covers wide dynamic range (≈10⁶) on a single shot
- Reduced mass near the scintillator
 - minimize re-scatter signal in the scintillator and **PMTs**
 - Minimize (n,γ) signal generation
- Placement of PMTs takes advantage of forward scattering bias
- Thinner scintillator reduces transit time contribution to **IRF**
- Solid bibenzyl scintillator (developed with Global Security) has superior late-time decay properties and should be more stable over time

Faster scintillator Less scattering

New Bibenzel Scintillator is Much Faster

Nuclear observable highlights from the HiFoot campaign

- HiFoot campaign* layered DT shots with Au or DU hohlraum:
 - Higher adiabat implosions with "high foot" on the laser pulse
 - Reduced compression but much improved stability
 - Yields 10¹⁵-10¹⁶ (current record is 9.6x10¹⁵ total DT birth yield)

From the newly fielded NTOFs, MRS, and N^a

- Tion asymmetry
- DSR asymmetry
- Hot spot mean burn-weighted velocities not z
- From the expanded Flange NAD
 - Better fuel anisotropy maps
- From the newly fielded RAGS
 - Overwhelming fission fragment data from DU hohlraum
- From the GRH
 - Carbon rho.R measurements
 - Total yield

* See O. Hurricane et al., Nature 506, p343-348, 20-Feb-2014

NIE

NAD Physics Basis Activation Concept

Four energy regions of interest:

1-10 MeV (T-T / D-D spectrum)

10-13 MeV (Downscattered)

13-15 MeV (Primaries)

15-30 MeV (Tertiaries)

Sample Activation Foil Cross Sections

$$^{115}In(n,n') \Rightarrow ^{115m}In$$
 $(t_{1/2}=4.5 \text{ h})$

93
Nb(n,2n) \Rightarrow 92 mNb $(t_{1/2}=10 \text{ d})$

90
Zr(n,2n) \Rightarrow 89 Zr (t_{1/2}=3.3 d)

63
Cu(n,2n) \Rightarrow 62 Cu (t_{1/2}=9.74 m)

12
C(n,2n) \Rightarrow 11 C (t_{1/2}=20 m)

⁹⁰Zr(n,2n)⁸⁹Zr Activation for 14 MeV D-T Yield "Well-NAD" Implementation

The five "flavors" of Neutron Activation

Access times are for yield <10¹⁶

Detector calibration B151 NCF has >40 years experience

Gas Cerenkov Detectors are used to see high energy gammas (4.4 MeV, 17.6 MeV...)

GCD Response to Various Gamma Ray Energies

Mack J.M. et al., Rad Phys Chem, 75 (2006) 551, Fig 5

- GCD Sensitivity determined by:
 - γ energy and;
 - Cherenkov Threshold Energy (determined by gas index of refraction)
- For γ energy below threshold, no Cherenkov, but there is still:
 - Transition Radiation (shown)
 - possibly fluoresence (not shown)
- Using detectors with different thresholds allows for γ-ray spectroscopy
- Scattering off othese these states could be measured radiochemically too

Recent measurements with a GCD show excellent timing (compliments of W. Stoeffl)

Collecting Noble-gas products from a NIF Capsule

Unique Features of ICF Environment for Nuclear Physics

as compared to accelerator-based approaches

- ▶ Low mass near target
- ► Sharp time structure
- Possibility of high neutron fluxes
- ▶ Willingness to work with tritium
- ▶ Largely limited to low-Z nuclei and nuetron-induced reactions, due to the Coulomb barrier

The first Nuclear Science experiment using HED plasmas was conducted at the OMEGA laser at University of Rochester

Capsule (~1 mm)

60 laser beams delivering up to 30 kJ Temperatures > 10 keV Densities up to 100 g/cc Pressures up to 50 Gbar

At OMEGA and the NIF, HED plasmas are created by spherically compressing a capsule

The conditions in HED plasmas (and in stars) are quite different from those created by accelerators

Dense and hot plasma

Accelerator experiments

M. Aliotta et al, NP A (2001).

The first nuclear physics experiment involving HED plasmas looked at the $d\sigma/d\Omega$ for the n+d/n+t elastic scattering at 14 MeV

Plasma serves as a neutron source and target

Spectra of the d' and t' were measured simultaneously with a simple charged-particle spectrometer (CPS)

$d\sigma/d\Omega$ for the n+t elastic scattering determined in this experiment³ is of much higher quality than data obtained in accelerator expts

These results indicate that recent advances in *ab-initio* theory^{2),4)} can provide an accurate description of light-ion reactions

¹ Epelbaum et al., PRC (2002).

² Deltuva et al., PRC (2012).

³ Frenje et al., PRL (2011).

⁴ Navrátil et al., LLNL-internal report (2010).

$T(T,2n)\alpha$ Motivation

- ▶ Study reaction mechanism: ⁵He and di-neutron correlations
- ▶ R-Matrix description of 3-particle final states
- ► Study mirror symmetry
- ▶ Demonstrate measurement of charged-particle reaction rate in plasma
- ▶ The cross section and neutron spectrum are important for inertial confinement fusion

The T+T reaction has been studied extensively at OMEGA and the NIF

On the NIF, neutron spectrometers, generally used to support the ICF program, were used to study the T+T reaction at low *ECM*

Measurement of the $T(t, 2n)\alpha$ at the National Ignition Facility

- ▶ Nearly pure tritium gas (0.1% D), low areal density "symcap" (gas-filled plastic capsule)
- $\triangleright \approx 200$ ps thermonuclear burn time
- $kT = 3.3(3) \text{ keV} \rightarrow E_{\text{Gamow}}(T + T) = 16 \text{ keV}$
- ▶ 2 organic liquid scintillators (xylene) @ 20 and 22 meters, respectively
- ► Modeling includes:
 - ► Instrument Response Function (time response)
 - ► Scintillator response (efficiency)
 - ▶ Attenuation and scattering
 - ► Thermal broadening
 - ▶ Background from T(d, n) (small)

Raw Data from Equator Detector @ 20.1 m

Fits to Time Spectra

TT neutron spectrum measured with unprecedented resolution and statistics -

D. Sayre, C. Brune, J. Caggiano et al., Phys. Rev. Lett. 111, 052501 (2013)

Excellent statistics and energy resolution

- 10¹³ total neutrons produced over 200ps thermonuclear burn
- 99.8% tritium target minimizes T(d,n) induced background
- Two 20-m nToFs measure spectrum with 280-keV resolution
- <σv> determination underway

Key findings:

- Presence of peak clearly established
- Antisymmetrization plays major role in spectrum shape

Determination of Thermonuclear Reaction Rate

▶ Definition: _

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu (kT)^3}} \int_0^\infty E \sigma(E) \exp[-E/(kT)] dE$$

- ▶ Principle of measurement:
 - ▶ Measure ratio to T(d, n) reaction rate (known to $\approx 1\%$)
 - ► H.-S. Bosch and G.M. Hale, Nucl. Fusion **32** 611 (1992)
 - Assume constant S factor for $T(t, 2n)\alpha$
- ▶ Mass spectrometry of capsule fill gas:
 - ▶ tritium: 99.598(4) %
 - ▶ deuterium: 0.082(1) %
 - ▶ remainder: protium and ³He
- ▶ Yield-weighted ion temperature determination:
 - use width of "14 MeV" neutron peak from T(d, n)
 - ▶ Brysk Formula: $\sigma[E_n] \approx \sqrt{\frac{2M_n \langle E_n \rangle}{M_\alpha + M_n} (kT)}$
 - ▶ H. Brysk, Plasma Physics **15**, 611 (1973)
 - ► Actual analysis uses a more sophisticated approach, including, e.g., relativistic kinematics

Reaction Rate Ratio is Insensitive to Temperature

T(d,n) and T(t,2n) Reactivity Integrands for kT = 3.3 keV

Systematic Errors Considered:

- ► Fuel mixture uncertainty
- ► Spectrum fitting
- ▶ Ion temperature determination (small)
- ▶ Total systematic error is estimated to be 10%

Analysis and Results

- ▶ Numbers of neutrons:
 - $N_{DT} \propto n_D n_T \langle \sigma v \rangle_{DT}$
 - $N_{TT} \propto \frac{n_T^2}{2} \langle \sigma v \rangle_{TT} \times 2$

 - watch factors of two!
- ► Spectral fitting:
 - $N_{DT} = 3.9(3) \times 10^{12}$
 - $N_{TT}/N_{DT} = 4.5(4)$
 - kT = 3.3(3) keV (burn-weighted)
- S(16 keV) = 200(20) keV-b

Comparison to other Data

Note the energy averaging in the plasma is not that different than many of the accelerator measurements, e.g., if a "stopping" target is used.

In a proof-of principle experiment, HED plasmas have been used to study the ³He+³He reaction

3
He + 3 He \rightarrow 4 He + 2p (0-10.8 MeV)
 \rightarrow 5 Li + p (9.2 MeV)
 \rightarrow 5 Li* + p
 \rightarrow 4 He + (pp)

The measured ³He+³He proton spectrum indicates both a p+⁵Li and p+p+⁴He in final state at ECM=165 keV

R-matrix model is based on feeding ampl determined from the fit to the Wong TT-n spectrum. Understanding spectral shape is important for determining cross-section from accelerator exps

^{**} Mark Paris et al., private communication. Zylstra et al., PRC to be submitted (2015).

Exploration of Basic Nuclear Science and Nuclear Astrophysics using HED plasmas is a nascent field with much potential

To date HED plasmas have been used to probe:

-	n+d / n+t elastic scattering1)	(basic nuclear science)
-	D(n,2n) reaction	(basic nuclear science)
-	T+T reaction ^{2),4),5)}	(mirror reaction to ³ He+ ³ He reaction)
_	³ He+ ³ He reaction ⁶⁾	(hydrogen-burning stars)
_	T+3He reaction6)	(basic nuclear science and BBN)
_	$D(p,\gamma)^3He$	(protostars, brown dwarfs and BBN)
_	$D(t,\gamma)^5He^{3)}$	(basic nuclear science)
_	D(³ He,γ) ⁵ Li	(basic nuclear science)

Future efforts will involve studies of about a dozen reactions

¹⁾ Frenje et al., PRL (2011).

²⁾ Casey et al., PRL (2012).

³⁾ Kim et al., PRC (2012).

⁴⁾ Sayre et al., PRL (2013).

⁵⁾ Brune et al., ArXiv (2015).

⁵⁾ Zylstra et al., to be submitted (2015).

Collection of solid and gaseous debris has been implemented at NIF

The first neutron reactions observed with the SRC were (n,γ) and (n,2n) on ¹⁹⁷Au from the gold hohlraum

Gold in the debris and backing foil had different (n,γ) signals The debris "sees" fewer low-energy scattered neutrons

Experimental Concept – We will add radioactive tracers to Symcap capsules to study production and cross sections of excited state and second-order capture species

- Goal: Measure capture and excited state cross sections relevant to WCI and GS programs
- Experiment: Add 10^16 atoms of radioactive tracers to DT Symcap
- Evaluate collection of capsule material and cross section determination
- Required diagnostics: SRC

Measure cross sections (n,γ and n,2n) for radioactive species

- Run two similar capsules, one loaded with ⁸⁹Y and the other with ⁸⁸Y (radioactive)
- Extract unknown cross sections from excited states from the difference

Experimental Concept – We will use BH3 filled targets to study the astrophysical ¹⁰B(p,a) ⁷Be reaction and explore physics of plasma screening. Paves the way for studying ³He(⁴He,γ)⁷Be.

- Measure reactivity of 10B(p,a) in plasma
- Run 10B(p,a) reaction in plasma and
- collect radioactive debris with RAGS
- Novel collection concept needs tested
- Laser Energy range < 1 MJ
- Complementary experiment measures same reaction on B in/on the hohlraum (non-plasma)

Summary and Conclusions

- A nuclear science program is under development at NIF and OMEGA
- A large range of nuclear diagnostics are implemented at NIF, including:
 - Neutron Time-of-Flight/Activation/Imaging
 - Prompt Gamma-ray detection
- Much remains to be done
 - Low-energy neutron detection
 - Solid debris collection

Collaborators

special thanks to J. Frenje, D. Sayre, and J. Caggiano for supplying slides for this presentation

<i>MIT</i> J. Frenje M. Gatu Johnson	<i>LLNL</i> D. Casey D. McNabb	UR C. Forrest	<i>LANL</i> G. Hale H. Herrmann	<i>GA</i> J. Kilkenny A. Nikroo
C. Li	D. Sayre	V. Glebov J. Knauer	Y. Kim	L. Reny
H. Rinderknecht F. Séguin A. Zylstra R. Petrasso H. Sio	S. Quaglioni I. Thompson J. Caggiano C. Cerjan D. Dearborn	T. Sangster R. Betti D. Meyerhofer P. Radha	M. Paris	M. Farrel D. Jasion
11. 310	J. Edwards R. Hatarik S. Hatchett O. Jones		<i>Ohio Univ.</i> C. Parker	<i>Indiana Univ.</i> A. Bacher
	O. Landen A. Mackinnon H. Robey		<i>Osaka Univ.</i> Y. Arikawa	Imperial College B. Appelbe
	R. Rygg D. Shaughnessy S. Sepke P. Springer B. Tipton		Notre Dame M. Couder M. Wiescher	

The End

Thanks for your attention!