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—ffective Recap

e “Top Down” EFTs: systematically integrate out heavy particles, large energy scales

AN

e Starting point: perturbative QFT (or EFT)
()
Power corrections (w/2)"
m "4 Perturbative corrections . (£2)

... large logs

W
e End point: lower-scale EFT
\/ Captures non-analyticities of effective d.o.f.

Designed to reproduce S-matrix elements, “matching”

e Greatly facilitates computations in energy regimes for which the full theory is
cumbersome and unnecessary
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lll. Describing Goldstone bosons



“‘Bottom Up” EFTs

o Effective d.o.f. arise non-perturbatively CMT: quasi-particles

AN

QCD: low-lying hadrons

e End point: breakdown of EFT at higher-scale
()
A\ Power corrections (w/)"
H . . W
Non-analytic corrections log Q
W
e Starting point: low-scale EFT

\/ Captures non-analyticities of IR d.o.f.

Matching with experiment / non-perturbative calculation

e Focus: spontaneous symmetry breaking for which EFT is constructed to
account for Goldstone modes. QCD chiral symmetry & pions



Ny
Massless QCD  Lqop = Ly + Lyu Lp=) Pl
1=1

e Take two flavors. These will correspond to up and down quarks.

e Massless QCD Lagrange density obviously has global U(2) flavor symmetry
but...

Chiral symmetry

Pr.r = %(1 F v5) projectors Yr.rR = PLRY
YilD o =Y ilp Yy + Ypil) g

¢ | eft- and right-handed fields do not mix: no chirality changing interaction

U(2) U (2)r YL — Lyr

LPL+RP
T R Yr — RYRr v = (LPL+ RPR)Y



Ny
Massless QCD  Lqop = Ly + Lyu Lp=) Pl
1=1

e Take two flavors. These will correspond to up and down quarks.

e Massless QCD Lagrange density obviously has global U(2) flavor symmetry
but...

Chiral symmetry

Pr.r = %(1 F v5) projectors Yr.rR = PLRY
YilD o =Y ilp Yy + Ypil) g

¢ | eft- and right-handed fields do not mix: no chirality changing interaction

Vector subgroup

U(2 R U(Q)V wL — VwL

V(PL+Pr)t =V
P on s Vibn Y — V(Pr + Pr)y (0



Chiral Symmetry of Massless QCD

Action invariantunder U(2)L, @ U(2)r =U(1), @ U(1)r @ SU(2) @ SU(2)R

U1z :r — 92y

1 | 1 . .
| w N _(BZHR _l_ 6’&9L) _|_ _(6’LQR L 6?,9[,)75 w
U(L)g : g — ey 2 2

Vector subgroup 60, = 0r =0 W — e U(1)y
Axial transformation —0; = 0r = 05 W — [cos 05 + irys sin O] = €'7754)

U(1) 4
Exercise:

Consider a non-singlet axial transformation ¥i — lexp(i¢ - Ts5)]ij;
Is there a corresponding symmetry group of the massless QCD action?



Chiral Symmetry of Massless QCD

Action invariantunder U(2)L @ U2)r =U(1)a@U(1)y @ SU(2), @ SU(2)R

e Global symmetries lead to classically conserved currents
J5u — 10%7510 J,u — "QDV/HD Jgu — %ﬂ;ﬁa% J%u — IDR%T%R

(Regulated) Theory not invariant under flavor-singlet axial transformation

(
< Ny e F,,, () d=2
O Jsyu(x) = O Jppu(x) — P Jp(x) = 20 T0
ol ) = I Ny e G ()G () d =
\ 27T

Chiral Anomaly
U(l)y @ SU(2), ® SU(2)rR

The chiral anomaly obstructs chirally invariant lattice regularization of
fermions (see Lattice QCD lectures)



Fate of Symmetries in Low-

—nergy QC

U(l)y @ SU(2)L ® SU(2)R

e Chiral pairing preferred by vacuum (non-perturbative ground state)

Chiral condensate  (Y)) = (Y r¢r) + (Y R) # 0

e Massless quarks can change their chirality by scattering off vacuum condensate
U(l)v X SU(Q)L X SU(Q)R — U(l)v X SU(Q)V

e Spontaneously broken symmetries lead to massless bosonic excitations

Nambu-Goldstone Mechanism

Broken generators in coset SU(2)r ® SU(2)r/SU(2)y

Number of massless particles?




Chiral Condensate (Yiptin) = —Adji

e Choice for vacuum orientation A € R from Vafa-Witten (P)

e After a chiral transformation (1, gty — Ly RY, (0 pibirr) = —AN(LRT)

e Describe Goldstone fluctuations of vacuum state with fields

0ji — Yji(x) = 050 + ... > e SU2), @ SU((2)r/SU(2)y
[L(z) R (2));; =[e+@)Tem0r@)7) 0 g = —dg
: 21
> =X/ =1 4 ]fb - ... Transformation properties

Y S IYRT w s vsvt ¢ — VeVl

Exercise:
Determine the discrete symmetry properties of the Goldstone modes from the
coset’s transformation.



Dynamics of Goldstone Bosons: Chiral Lagrangian

i 2@¢ TI' ¢ — O LTFO 7.‘_—|—
Z:€2¢/f:1,L f - ¢T:¢ The Pions ¢:(\/§ 10
70 \/§7T
e Build chirally invariant theory of coset field
> — LYRT ; > f?
¥y =1 L="Tr(0"%0,%T
st RYIL g Tr (0"30,%7)
e Expand about v.e.v. to uncover Gaussian fluctuations
1 1
L = §Tr (0M 9 0,0) + O(1/f?) = 55’“770(9“7?0 + oM, + O(1/f?)

3 massless modes

e Non-linear theory: interactions between multiple pions
at “higher orders”

Can treat systematically...



Including Quark Masses

e \We began with massless QCD. Quarks have mass, Higgs makes two very light
e Chiral symmetry of action is only approximate: explicit symmetry breaking

A£¢ — —My Z%% — — My Z (Ez’R'wiL T @iLwiR)

1

SU(Q)L®SU(2)R—>SU(2)V mq/AQCD <1

* Need to map AL, onto ChPT operators breaking symmetry in same way

ALcg = mgATr (X + T)

S > — LYR!
Comments: not chirally invariant oy Ryt
new dimensionful parameter A
included only linear quark mass term m?]

Perturbing about chiral limit



. . 2
Chiral Lagrangian £, = 21 (0"50,57) + m AT (5 + 5)

Emy 1
f§ §TT (¢00)

1
e Expand up to quadratic order £, = 4m A + §Tr (0"} D) —
Pion mass m. = 8my\/f”

e \Vacuum energy must be due to chiral condensate (ingredient in our construction)

QCD degrees of freedom

Zacplmag, - -] = /p...eifx(---—mﬂw ialogj?(m = (Y1)
Low-energy degrees of freedom Effective field theory
Zyprmg, .. ] = / DS el Ex(Zima) Zacp[mg, -] = Zyprlmg, - ]
Matching

From before:

(Yih) = ialogjxm — _MTr (S+50) = —2NyA | Wirtin) = —Ad;i
q A=A




. . 2
Chiral Lagrangian £, = 21 (0"50,57) + m AT (5 + 5)

1 8mgA 1
e Expand up to quadratic order £, = 4mgA + 5 It (0"® 0, 0) — f§ 5 1T (99)
Pion mass m. = 8m \/ [~ f2m2 = 2m,|(yY)|  (Gell-Mann Oakes Renner)

e \Vacuum energy must be due to chiral condensate (ingredient in our construction)

QCD degrees of freedom

Zacplmag, - -] = /p...eifx(---—mﬂw ialogj?@ = (Y1)
Low-energy degrees of freedom Effective field theory
Zyprmg, .. ] = / DS el Ex(Zima) Zacp[mg, -] = Zyprlmg, - ]
Matching

From before:

(Yih) = ialog?fxm — _MTr (S+50) = —2NyA | Wirtin) = —Ad;i
q A=A




2
ChPT L, = ‘%Tr (G“Z@LZT) + mgATr (X + ZT)

e Quadratic fluctuations are the approximate Goldstone bosons of SChSB

e Quartic terms describe interactions Mg
~ 7 gb (bamb

e Higher-order interactions renormallze lower-order terms

Mg A '
Am?2 ~ fi / . m2 log A? + finite)

power-law dlvergencef 1 logarithmic divergence

Ab§ot[b a rzllqormalllzeoll masT ot Renormalization requires new
or just use dimensional regularization operator in chiral Lagrangian

e ChPT is non-renormalizable (needing infinite local terms to renormalize)
1). low-energy theory, so who cares?

2). must be able to order terms in terms of relevance “power counting”



. 2
Power Counting £y = LT (920,5) + mA Tr (84 21)

e | eading-order Lagrangian in expansion in derivatives and quark mass
O(p?) Oy ~p Mg ~ p° Low-energy dynamics of pions
(

k-2 _ m2 ™~ p_2 Vertices (9“(‘91“ mq ~ p2 Loop integl’al/k ~ p4

T

Propagator

General Feynman diagram: L loops, | internal lines, V vertices ~ p*- 22V

Euler formula L=1-V +1 ~ p2lt2

® |_oop expansion: one loop graphs require only O(p4) counterterms

Two loop graphs?



O(p*) Chiral Lagrangian

e Construct chirally invariant terms out of coset Y — LY RT
> = RYTLT

E.g. O(p?) Lagrangian o' 0,51

e Construct terms that break chiral symmetry in the same way as mass term

Simplification: add external scalar field to QCD action AL = —1);s1)r — @RstpL
Make the scalar transform to preserve chiral symmetry s — LsRI

Giving the scalar a v.e.v. breaks chiral symmetry justasamass s=m,;+ -

E.g. O(p?) Lagrangian SsT 4 s30T



O(p*) Chiral Lagrangian

Y LYRT s > LsR

Also impose Euclidean invariance, C, P, T
I - RYILT T — RsTLT

Eg. [Ir (ZST — SZT)]Q — mg Tr (X — ZT)]Z =0

Easy to generate terms. Care needed to find minimal set.
Ly =11[Tr (0"%9,51)] + Lo Tr (0#20ET) Tr (0,30, 37)
Mg\ (Mg N)?
1 14
{L;} low-energy constants = Gasser-Leutwyler coefficients, dimensionless
N.B. these are not Gasser-Leutwyler’s coefficients

Tr (0"£9,50) Tr (£ + ©F) + Ly Tr (2 +27))7

Complete set of counterterms needed to renormalize one-loop ChPT
Additional terms necessary when coupling external fields...

Exercise:

Determine the effects of strong isospin breaking 1., # Mg on the chiral
Lagrangian. At what order does the pion isospin multiplet split?



Simplest one-loop computation: Chiral Condensate

— 81 Z
(Pp) = 05 IXPT _ —MTr (X + ZT)> = —2N;\ “Tree-Level”
om, o
Z+ZT—2—F¢+ One Loop
— 4\ 12\ 1
N RECUE Y (U
Dimensionally regulated integral - (ZSQ (1 — e + log4m + log % + 1)
A \2 4
Ly 5T (920,57) Tr (2 + 37) - 2L, m; Tr (S + £1))? O(p")
Mg\ m2 “Tree-Level”
= —3214 £ —4)\ f2 -
Final result: Chiral Logarithm

3m 2 2
B0 =~ 1+ 20 (log 24 1) + TR () PR




Two-Flavor ChPT £, = L [1r (9°30,51) + m,A Tr (2 + 2]

¢ | eading and next-to-leading order Lagrangian in isospin limit M, = Mgq
Ly =11[Tr (0"%9,51)]? + Lo Tr (0#20"%T) Tr (0,30, 37)
Mg A )\)2
f2 f4

e Compute quark mass dependence of chiral condensate, pion mass, pion-pion
scattering, ..., in terms of a few low-energy constants

(1)) = Ao [1 + Bomg (logmg + Co)] v
m2 = A; mg |1 + By my (logm, + C1)]
= As\/my |1 + By my (logmg + C3)]

+ L3 —22Tr (0459, 51) Tr (S + 2F) + Ly i [Tr (2 + 7))

e Further applications: electroweak properties of pions require external fields



Incorporating External Fields in ChPT

e Start by incorporating external gauge fields in QCD

Ly = ViYL + Y RilDr YR

(D) =0, +19G, +1iL,

(Dr)y =0,+19G,+1iR,  Localinvariance [SU(2)r]® [SU(2)R]

v, — L(z)yr . L, — L(z)L, L' (x) +i[0,L(z)|L" ()

Yr — Rx)yr O R, — R(z)R,Ri(z) + i[0,R(x)| R (z)
e Then incorporate external gauge fields in ChPT

> — L(z)XR'(z)  Need covariant derivative D, — L(x)[D,X|R'(z)
D,Y = 9,% +iL,~ — iXR)],

E.g. external vector field L, = R, = QeA,

(
(

Leading-order chiral Lagrangian [with external fields counted as O(p) ]

2 o
Lo = % [Tr (D“EDMZT) + mgA Tr (Z 4 ZT)] *Additional operators

at higher orders



W
___ ™ — U+ V
What s 17 @ <Vu S

Pion weak decay AL = W—MJ:L J:L = UrLYu.dr

Strong part factorizes into QCD matrix element 4 S\
(the rest you learned how to compute in QFT) (0| o m(P)) = ipyu fx

(2 2\ pion decay constant
_ F 2 2 2 I
Pt = g Femu il Vadl (1 B W) fr = 132MeV
ChPT current matches the QCD current T = %(Tl +i1?)
., oL f? . f i
“L:aLaﬁ :zTr(ZT Z@MZT)—I—---:gTT(T L)+ - -
L,=0

+ A\ — 4
(0 |J,uL| m(p)) = ipu (f+---) Dimensionless power counting p2/Ai

_ ~ 1 2 A2
fﬂ_ — f [1 —I— qu (10g mq _|_ C)] AX 2\/§7Tf 1 2GeV mﬂ./ X




—Xercise:

ChPT as an EFT

AN

A, =2V2rf

D, Mg

The masses of hadrons are modified by
electromagnetism.

{3 i

Construct all leading-order electromagnetic
mass operators by promoting the electric
charge matrix to fields transforming under
the chiral group. (Notice that no photon fields
will appear in the electromagnetic mass
operators because there are no external
photon lines.) Which pion masses are
affected by the leading-order operators?
Finally give an example of a next-to-leading
order operator, or find them all.




Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)

[ e * No series expansion
Toy Model F(z) = /O ds [ on l<rkl About X<0
F(x) = / dse ° Z(—s a:)j L Z(—x)J (/ ds s’ 6_8)
0 =0 =0 0

Large N ~V2rN(zN)Ve ™ ~ QWe_% Minimize
xr~1/N




Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)

o —S . .
€ No series expansion
Toy Model F'(x)= ds D<Kl
0y Mode () 0 1+ sz < about x=0

= | N=1

% o.zsé— ]

i 0.15:

E:'/ 0.0'§-

0o Q.1 02 § 03 a4 2.5
2T _ 1 C e
|F(x) — Fn(x)] S/ —e = Minimize

X

r~1/N




Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)

@) — S . .
€ No series expansion
Toy Model F(x) = ds 0<zrkl
y () 0 1 4 sx about x=0

%o.zs;-

Eo.ls:

| ;

E:/().U'é'
2T _ 1 C e

|F(x) — Fn(x)] S/ —e = Minimize
X

r~1/N




Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)

> e * No series expansion
F(x) = ds 1
Toy Model ~ (z) /O |t se VTS about x=0

R 0.30;- N=1

%0.255

2"
27‘(‘ 1 Ce .

|F(z) — Fn(z)| S\ —e = Minimize

X

r~1/N




Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)

Toy Model F(z) =

1+ sx U<z <1 about x=0

N:],Z N=3 N=2

o0 — S . .
/ g © No series expansion
0

W Shineait f!’ AT T T 77 ! N2
Include more terms: = | | ' Make better at larger x
. . = 020F [ | | .
limits to smaller x o by dropping terms
&, 0I5
':? o.mf—
=
().03:'
o.oo['m 0.1 . .ole - .of.’.. = .ol_-:. = .(;5
X
2T _ 1 C e
|F(x) — Fn(x)] S/ —e = Minimize
X

xr~1/N




Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)

Chiral expansion m?2 / Ai ~ 0.02  (may even be OK for larger-than-physical
m2 /m2 ~ 0.03 pion masses)

m2 /m2 ~ 0.08

EFT cannot capture non-analyticities from meson resonances

e Higher orders introduce more parameters (low-energy
constants)

e Makes addressing convergence difficult without
knowing the chiral limit values of these parameters




Three-Flavor Chiral Limit”?

mq/AQCD ~ 0.01
mS/AQCD ~ 0.3

3
Ly = Z% (1) —my) s
i=1

Ignore the warning signs




Three-Flavor Chiral Limit

Symmetries and

3
their breaking Ly = Z%@lp% + ... (W) = (Yppr) + (Y g) # 0
i=1

Ul)y @SUQB), @ SUB)r — U(1l)y ® SU(3)v

Nij~ (yrthin)  Biyla) =0 +...  SUB)L® SUB)R/SUB)Y
Goldstone modes (embedded similarly to before)

S =2 Y S LERT TS VRV 6 VeV

EAC
6= m vt K
\ K K ~ 75"/



Three-Flavor Chiral Perturbbation Theory

ez
Explicit breaking —@L myr — @R mr, m = ( Mg )
M

Ul)y @ SUB) @ SUB)r — U(l)y @ SU3)y

2
O(p?) L, = %Tr ((‘W‘ZQLZT) + A Tr (mZ - mET)

Chiral perturbation theory (constructed similarly to before)

S =e2/f S S LYRT LS VIV 6o VeVl

O( 4) Seven Gasser-Leutwyler coefficients,
P a few more when external fields are included



—Xerclses

In the strong isospin limit, there are two different quark masses but three meson
masses of the pseudoscalar octet. Use the three-flavor chiral Lagrangian to derive

A — % 2 o2 oo 0 . .-
the constraint —GMO = g¥tk = Ty = Tx =L which was originally found by
Gell-Mann and Okubo. What happens away from the strong isospin limit?

Revisit electromagnetic mass corrections in three-flavor chiral perturbation theory.
Find all leading and next-to-leading order electromagnetic mass operators. Ignoring

the up and down quark masses, which octet masses are affected by leading and
next-to-leading order operators?

Accounting for strong and electromagnetic isospin breaking to leading order,
determine the mass spectrum of the meson octet, and devise a way to compute

the quark mass ratios, Mv/M4 Mq/Ms , using the experimentally measured
masses.



Three-Flavor Chiral Perturbbation Theory

- _% 2 2 _1 2
Gell-Mann Okubo mass relation Aagmo = 3mK m, 3m7T =0

Mo = 135.0 MeV

mxo = 497.6 MeV Acvo/m; ~ 15%
m,, = 547.9 MeV

Next-to-leading order corrections: O(p?) one-loop + local terms from O(p*)

4
Mg

mchx

0=0(p*)

1 most worrisome ~ 35% ﬁr

m?2 / A?c ~ 0.0 introduces free parameter

m%(/Ai ~ 0.23

S o Pending numerical factors, O(p®) contributions
m, /A ~ 0.27

(which include two-loop diagrams) should be ~10%



Summary
ll. Describing Goldstone bosons

e Spontaneous symmetry breaking can be systematically addressed in EFTs

/\ * EFT construction is “bottom down”
In essence effective d.o.f. arise non-perturbatively
AX
e Goldstone boson dynamics consequence of pattern of
L4 spontaneous and explicit symmetry breaking

P, M (mK7 m’n?)

\/ e E.g. Chiral perturbation theory provides the tool to
account for light quark mass dependence of low-energy
QCD observables.

Size of light quark mass controls efficacy



