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Effective Overview

Effective (quantum) field theories exploit a separation of scales

Example: Electric field far from source
µ

r � R

(� = c = 1)

Low-scale physics is largely insensitive to high-scale physics
(long-distance)                                         (short-distance)

ω ∼ 1/R

Ω ∼ 1/r

Ω � ω

∼ r

physical distribution of charge

R
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Effective Overview

Effective (quantum) field theories exploit a separation of scales

Goal: investigate power counting for various effective QFTs
µ

r � R

(� = c = 1)

Low-scale physics is largely insensitive to high-scale physics
(long-distance)                                         (short-distance)

ω ∼ 1/R

Ω ∼ 1/r

Ω � ω

UV regulator alters high-scale physics to compute quantum effects

QFTs require a regulator and renormalization

Renormalization: absorb effects of regulator into theory parameters



Effective Overview

Effective (quantum) field theories exploit a separation of scales

Goal: investigate power counting for various effective QFTs
µ

r � R

(� = c = 1)

Low-scale physics is largely insensitive to high-scale physics
(long-distance)                                         (short-distance)

ω ∼ 1/R

Ω ∼ 1/r

Ω � ω

“Top Down” I. Removing heavy particles 
II. Removing large scales

Start from perturbative high-scale theory, arrive at simpler low-scale EFT

“Bottom Up”

Construct low-scale EFT using non-perturbative degrees of freedom

III. Describing Goldstone bosons
IV.  Interacting with Goldstone bosons



Effective Field Theory

I. Removing heavy particles 



Euler-Heisenberg EFT

µ

EFT for low-frequency photons                    obtained by “integrating out” electron

ω

me

QED

EFT

ω � me

LQED = −1

4
FµνF

µν + ψ(iD/−me)ψ

Photon-photon scattering mediated by virtual electron in QED

L = dim4

ψ = dim
3

2

Fµν = dim2
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Exercise

• Include low-energy virtual photons in the Euler-Heisenberg EFT. What new 
local operator of lowest dimension is required? Determine the coefficient of 
this operator from matching to QED at one-loop order.  

LEFT = −1

4
FµνF

µν+ ???

+
α2

90m4
e

�
(FµνF

µν)2 +
7

4
(Fµν F̃

µν)2
�



Effective Lessons

• EFT as low-energy limit of a QFT • Short-distance physics encoded 
in coefficients of local operators

c1(FµνF
µν)2 + c2(Fµν F̃

µν)2

• Infinite tower of such higher-dimensional operators requires power counting

F 2 ∼ ω4, F 4 ∼ ω8 γγ → γγ ∼ ω4

m4
e

• Can make predictions without employing full QFT, and can systematically improve

• Coefficients of higher dimensional operators must be determined

Finitely many operators to a given order

EFT is itself a QFT... compute radiative corrections (non-analytic)

Operators built from effective d.o.f.

Respect symmetries of underlying theory

ExperimentPerturbation Theory Non-perturbative (lattice QCD)

“Top Down” “Bottom Up”
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• Coefficients of higher dimensional operators must be determined

Operators built from effective d.o.f.
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Perturbation Theory

“Top Down”

Euler-Heisenberg EFT from finite one-loop diagram in QED perturbation theory
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EFT is itself a QFT... compute radiative corrections (non-analytic)



Standard Model as an EFT

• Renormalizable interactions of SM are the low-energy limit of some high-energy theory

µ

M ∼ TeV?

L = dim4

ψ = dim
3

2

Fµν = dim2

• Physics beyond SM encoded in a tower of higher-dimension ops.

LEFT = LSM +
∞�

j=1

�

k

c(j)k

Mj
O

(4+j)
k

dimO
(4+j)
k = 4 + j

dim c(j)k = 0 naturalness c(j)k ∼ 1

EEW
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�
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c(j)k

Mj
O

(4+j)
k

dimO
(4+j)
k = 4 + j
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Neutron EDM

dE �S · �EGenerate electric 
dipole moments

• QFT prejudice: associate energy scale with mass of new heavy particle

c(4) ≡ θ � 1 unnatural = strong CP problem

EEW

�
EEW

M

�2



Exercise

• Enumerate all dimension-6 CP violating operators that respect Standard 
Model symmetries. How do these operators appear after electroweak 
symmetry breaking?

O
(6) = ψLσµνG̃

µνΦψR

O
(6) = fabcG̃a ν

µ Gbα
ν Gc µ

α



Integrating Out Heavy Particles
Φ, φ

MΦ � mφ

• Perform path integral over heavy field

• Expand result in local operators built from light field eiSeff[φ] =

�
DΦ ei

�
d4xL(Φ,φ)

�
DΦ ei

�
d4xL(Φ,0)

µ

MΦ

mφ

Illustrative toy model (Gaussian path integral)

L =
1

2
∂µΦ∂

µΦ− 1

2
M2

ΦΦ
2 + Φ J <--  coupling to φ

Complete the square to deduce

Seff[φ] = −1

2

�
d4x d4y J(x)G(x− y)J(y)

Operator 
product 
expansion

+ . . .

J(y) = J(x) + (y − x)µ∂
µJ(x) + . . .
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Fermi Theory as an EFT

• Weak interactions are so because of large masses of W and Z bosons

+ . . .

µ

MZ ,MW

mf

g g

∼ 1

q2 −M2
W

g2

M2
W

�
1 +O

�
q2

M2
W

��

• Four-Fermion interaction Leff =
GF√
2

�
ψψ

�
V−A

�
ψψ

�
V−A

L = dim4

ψ = dim
3

2

Fµν = dim2

GF = dim(−2) matching to standard model reveals GF =

√
2g2

8M2
W

• Non-renormalizability of Fermi theory implies energy scale

• Efficacy of Fermi theory controlled by power counting, e.g. ß-decay

n → p+ e+ νe
(δMN )2

M2
W

∼ 10−10power corrections(uLγµdL)(eLγ
µνL)



Beyond Tree Level

• “Top-down” uses perturbation theory to integrate out heavy particles 

µ

MZ ,MW

mf

• In addition to power corrections, there are perturbative corrections 

+ power corrections

+

QED QCD

• Fortunately QED and QCD are perturbative at the weak scale

α(MZ) ∼
1

128
αs(MZ) ∼ 0.1

• Introduces renormalization scale and scheme dependence in EFT cO(x) → c(µ)O(x, µ)



Exercise

• Are there pQCD corrections to the ß-decay 
operator in Fermi EFT? If so, characterize them. 
If not, explain why.  

n → p+ e+ νe(uLγµdL)(eLγ
µνL)



The Dirtiest Corner of Standard Model

• Hadronic weak interaction observable through processes that violate QCD symmetries

∆s = 1, K → ππ

Flavor changing

∆s = 0, p+ p
PV−→ p+ p

p+ 4
He

PV−→ p+ 4
He

Flavor conserving but parity violating

+ PV nuclear reactions

µ

MZ ,MW

W±, Z0

q q

q q

[Particle Physics]

[Nuclear Physics]

ΛQCD c(µ) �p p |OPV (x, µ)|p p �c(µ) �π π |O∆s=1(x, µ)|K�

Quark weak interactions 
known at weak scale

Non-perturbative matrix elements  computed at QCD scales with lattice
will be

Must determine EFT at low scales using renormalization group...
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Hadronic Parity Violation Beyond Trees

MZ ,MW

ΛQCD

mc

mb

• Standard Model has isotensor PV interactions

• Fermi PV EFT described by one operator 
L
∆I=2
PV =

GF√
2
C(µ)O(µ)

Ctree ≈ − sin2 θW

O = (qτ3γµq)L(qτ
3γµq)L − 1

3
(q�τγµq)L · (q�τγµq)L − {L → R}

QCD Renormalization at one loop

Full theory Effective theory

log
M2

W

−p2
UV finite UV divergent log

µ2

−p2

log
M2

W

−p2
= log

µ2

−p2
− log

µ2

M2
W

EFT will reproduce full theory by altering the low-energy coefficient 

∆C(µ) = −γO
αs(µ)

4π
log

µ2

M2
W

EFT @         has no log, EFT @       has large log --> sum using RGMW mb

µ



Effective theory

Hadronic Parity Violation Beyond Trees

• Standard Model has isotensor PV interactions

• Fermi PV EFT described by one operator 
L
∆I=2
PV =

GF√
2
C(µ)O(µ)

Ctree ≈ − sin2 θW

O = (qτ3γµq)L(qτ
3γµq)L − 1

3
(q�τγµq)L · (q�τγµq)L − {L → R}

QCD Renormalization at one loop

4πµ
d

dµ
C(µ) = γO αs(µ)C(µ)

Nf -dependent
C(µ�) = U(µ�, µ)C(µ)Solution to RG evolution

U(µ�, µ) =

�
αs(µ�)

αs(µ)

�−γO/2β0

Multiple scales: once below heavy quark threshold integrate out, then 
match               and        EFTs at the scale 

β0 = 11− 2

3
Nf

NfNf − 1 mQ

MZ ,MW

ΛQCD

mc

mbNf = 5

Nf = 4

Nf = 3
C(ΛQCD) =

�
αs(ΛQCD)

αs(mc)

�− 6
27

�
αs(mc)

αs(mb)

�− 6
25

�
αs(mb)

αs(MW )

�− 6
23

C(MW )



Effective Summary
I. Removing heavy particles 

• Heavy particles can be systematically integrated out resulting in EFTs

MZ ,MW

ΛQCD

mc

mbNf = 5

Nf = 4

Nf = 3

• EFT coefficients determined from matching “top-down”

power corrections perturbative corrections

�
mφ

MΦ

�n �
αs(mφ)

αs(MΦ)

�−γO/2β0

• Theories have different UV behavior

log
M2

W

−p2
= log

µ2

−p2
− log

µ2

M2
W

• Only IR behavior is shared and thus cancels in matching

Computations in EFT are simpler (one scale at a time)
EFT involves only d.o.f. relevant to energy regime 

Standard Model is an EFT ... arises from integrating 
out heavy new particles?


