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* Global properties of atomic nuclei
* Shell structure

* Nucleon-nucleon interaction

* Deuteron, Light nuclel



Global properties of atomic nuclei
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Calculated and measured densities
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Binding

The binding energy contributes significantly (~1%) to the mass of a nucleus. This implies that the constituents
of two (or more) nuclei can be rearranged to yield a different and perhaps greater binding energy and thus
points towards the existence of nuclear reactions in close analogy with chemical reactions amongst atoms.

Binding energy per nucleon

Average binding energy per nucleon (MeV)
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The sharp rise of B/A for light nuclei comes from increasing the number of nucleonic pairs.

Note that the values are larger for the 4n nuclei (a-particle clusters!). For those nuclei, the
difference 4He

I
AE = B(N,Z)-nB(2,2)

divided by the number of alpha-particle pairs, n(n-1)/2, is roughly constant (around 2 (MeV).
This is nice example of the saturation of nuclear force. The associated symmetry is known as
SU(4), or Wigner supermultiplet symmetry.

Table 1-3: Binding energies (MeV) for some stable light nuclei.

Symbol Ep | Ep/A] AE | Symbol Egp | Eg/A || Symbol Ep | EgfA
’H 2.22 | 1.11 — 3H 8.48 | 2.83 $He 772 | 2.57
1He 28.30 | 7.07 — || ®He 2741 | 5.48 SLi 26.33 | 5.27
8Li 32.00 | 5.33 — TLi 39.25 | 5.61 "Be 37.60 | 5.37
8Be 56,50 | 7.06 | -0.09 | °Be 58.17 | 6.46 °B 56.31 | 6.26
10p 64.75 | 6.48 — [ B 76.21 | 6.93 g 73.44 | 6.68
2¢ | 9216 | 768 | 727l BC | orar| 747 | BN | ¢411] 7.24
UN 1 104.66 | 748 .~ BN |11549| 7.70 180 1111.96 | 7.46
180 12762 | 708 | 1444 | YO |131.76 | 7.75 P 12822} 7.54
B | 13737 | 763 | — | VP {14780 | 778 | ¥Ne | 14378 | 7.57

| ™Ne |160.65 | 8.03 | 19.17 | 2'Ne {16741} 7.97 Na | 163.08 | 7.77

CPNa (17415 | 782 | — || *Na |186.57 | 811 || Mg |181.73 | 7.90

- Mg | 198.26 | 826 | 28.48 || Mg | 205.59 | 8.22 BAl 20053 | 8.02
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The most tightly bound nucleus
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In many textbooks, '™ we are told that **Fe is the nuclide
with the greatest binding energy per nucleon, and therefore
is the most stable nucleus, the heaviest that can be formed
by fusion in normal stars.

But we calculate the binding energy per nucleon BE /A4,
for a nucleus of mass number A, by the usual formula,

BE /4= (1/A)(Zmy + Nm, — M. )¢, (1)

where m, is the hydrogen atomic mass and m, is the neu-
tron mass, for the nuclides **Fe and ®*Ni (both are stable)
using data from Wapstra and Audi.* The results are 8.790
MeV /nucleon for *°Fe and 8.795 MeV/nucleon for **Ni.
The difference,

(0.005 MeV/nucleon) ( =60 nucleons) = 300 keV, (2)

is much too large to be accounted for as the binding energy
of the two extra electrons in ®*Ni over the 26 electrons in
°Fe,

*°Fe is readily produced in old stars as the end product of
the silicon-burning series of reactions.” How, then, do we
explain the relative cosmic deficiency of “*Ni compared
with °Fe? In order to be abundant, it is not enough that
2Ni be the most stable nucleus. To be formed by charged-
particle fusion (the energy source in normal stars), a reac-
tion must be available to bridge the gap from *°Fe to **Ni,

To accomplish this with a single fusion requires a nuclide
with Z = 2, 4 = 6. But no such stable nuclide exists. The
other possibility is two sequential fusions with *H, produc-
ing first **Co then **Ni. However, the *H nucleus is unsta-
ble and 1s not expected to be present in old stars synthesiz-
ing heavy elements. We are aware that there are
element-generating processes other than charged-particle
fusion, such as processes involving neutron capture, which
could generate nickel. However, these processes apparent-
ly do not occur in normal stars, but rather in supernovas
and post-supernova phases, which we do not address.

We conclude that *°Fe is the end product of normal stel-
lar fusion not because it is the most tightly bound nucleus,
which it is not, but that it is in close, but unbridgeable,
proximity to ®*Ni, which is the most tightly bound nucleus.

'Arthur Beiser, Concepts of Modern Physics (MeGraw-Hill, New York,
1987), 4th ed., p. 421.

*Frank Shu, The Physical Universe (University Science Books, Mill Val-
ley, CA, 1982), Isted., pp. 116-117.

*Donald D. Clayton, Principles of Stellar Evelution and Nucleosynthesis
( McGraw-Hill, New York, 1968), p. 518,

*A. H. Wapstra and G. Audi, Nucl. Phys. A 432, 1 (1985).

*William K. Rose, Astrophysics (Holt, Rinchart and Winston, New York,
1973), p. 186,



Binding (summary)

For most nuclei, the binding energy per nucleon is about 8MeV.
Binding is less for light nuclei (these are mostly surface) but there are

peaks for A in multiples of 4. (But note that the peak for 8Be s slightly lower than
that for 4He.

The most stable nuclei are in the A~60 mass region

Light nuclei can gain binding energy per nucleon by fusing; heavy nuclei by fissioning.

The decrease in binding energy per nucleon for A>60 can be ascribed to the repulsion between the (charged) protons in the
nucleus: the Coulomb energy grows in proportion to the number of possible pairs of protons in the nucleus Z(Z-1)/2

The binding energy for massive nuclei (A>60) thus grows roughly as A; if the nuclear force were long range, one would
expect a variation in proportion to the number of possible pairs of nucleons, i.e. as A(A-1)/2. The variation as A suggests

that the force is saturated; the effect of the interaction is only felt in a neighborhood of the nucleon.



Nuclear liquid drop

The semi-empirical mass formula, based on the liquid drop model, considers five
contributions to the binding energy (Bethe-Weizacker 1935/36)
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The semi-empirical mass formula, based on the liquid drop model,
compared to the data
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Pairing energy

The semi-empirical mass formula and nuclear stability

N=8
A A=92 A
| A odd-odd [ N=20
@ even-even LY
i 3-\ - N=28 A=124" 1
10 A = . .
- [} = .c
s | §=2' N=126
g - [ ] : - 3
2 s 1F LI
L --Iwmﬁr._.
Z‘i i L - Ut
: 0-. Laaselaaa S Y daaabagaad ey s b ssaleor el aalegtalonaalaad
R 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
- ~1.8Mev At ApEny N
0\-—
I317 1 1 4I1 412 413
Rb Sr Y 2Zr Nb Mo Tc
Z=8
4F
>
©
2
o
<]

A common phenomenon in mesoscopic systems!



Neutron star, a bold explanation

A lone neutron
star, as seen by
NASA's Hubble

Space Telescope

Let us consider a giant neutron-rich nucleus. We neglect Coulomb, surface, and

pairing energies. Can such an object exist?

More precise calculations give M(min) of about 0.1 solar mass (M,

. Must neutron stars have



Fission

* All elements heavier than A=110-120 are fission unstable!
* But... the fission process is fairly unimportant for nuclei with A<230. Why?
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Deformed liquid drop (Bohr & Wheeler, 1939)
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Potential energy (MaV)
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Nuclear shapes

The first evidence for a non-spherical nuclear shape came from the
observation of a quadrupole component in the hyperfine structure of
optical spectra. The analysis showed that the electric quadrupole
moments of the nuclei concerned were more than an order of magnitude
greater than the maximum value that could be attributed to a single
proton and suggested a deformation of the nucleus as a whole.

*Schuler, H., and Schmidt, Th., Z. Physik 94, 457 (1935)
*Casimir, H. B. G., On the Interaction Between Atomic Nuclei and
Electrons, Prize Essay, Taylor's Tweede Genootschap, Haarlem (1936)

The question of whether nuclei can rotate became an issue already in
the very early days of nuclear spectroscopy

Thibaud, J., Comptes rendus 191, 656 ( 1930)

Teller, E., and Wheeler, J. A., Phys. Rev. 53, 778 (1938)

Bohr, N., Nature 137, 344 ( 1936)

Bohr, N., and Kalckar, F., Mat. Fys. Medd. Dan. Vid. Selsk. 14, no, 10
(1937)
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Coexistence of collective
and noncollective motion
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Nucleonic Shells



electronic
shells of

the atom
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We know now that
this picture is very
incomplete...
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Average one-body Hamiltonian
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Shell effects and classical periodic orbits
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One-body field
* Not external (self-
bound)

Shells * Hartree-Fock

* Product (independent-particle) state is often an excellent starting point
* Localized densities, currents, fields
* Typical time scale: babyseconds (10-22)

e Closed orbits and s.p. quantum numbers

But...

e Nuclear box is not rigid: motion is seldom adiabatic

e The walls can be transparent

e In weakly-bound nuclei, residual interaction may dominate the picture: shell-model basis does not govern the physics!

e Shell-model basis not unique (many equivalent Hartree-Fock fields)



Shell effects and classical periodic orbits

Balian & Bloch, Ann. Phys. 69 (1971) 76
Bohr & Mottelson, Nuclear Structure vol 2 (1975)
Strutinski & Magner, Sov. J. Part. Nucl. 7 (1976) 138

Trace formula, Gutzwiller, J. Math. Phys. 8 (1967) 1979

The action integral
for the periodic
orbit y

n for
ucture

Principal shell Distance between shells
quantum number (frequency of classical orbit)



Pronounced Shell structure

shell structure absent
(quantum numbers)

shell

5ap

shell

5P

shell

closed trajectory

(regular motion)
trajectory does not close
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Many-bod
dynamics

Revising textbooks on nuclear shell model...

2% levels in neutron-rich nuclei
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Living on the edge... Correlations and openness

Light drip line nuclei
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Neutron Drip line nuclei
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The Force
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Nuclear force

A realistic nuclear force force:
schematic view
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Nucleon-Nucleon interaction (qualitative analysis)

" repulsive
100 - core
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heavy mesons

There are infinitely
many equivalent
nuclear potentials!

HU = BV
(UHU YOO = EUD

Reid93 is from
V.G.J.Stoks et al., PRC49, 2950 (1994).

AV16 is from
R.B.Wiringa et al., PRC51, 38 (1995).



Phase Shift (deg)

Phase Shift (deg)

Phase Shift (deg)

N3LO: Entem et al., PRC68, 041001 (2003)

nucleon-nucleon interactions

Effective-field theory
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three-nucleon interactions

nigal puiges rom moon and Sun

Three-body forces between protons and neutrons are
analogous to tidal forces: the gravitational force on the Moon
Earth is not just the sum of Earth-Moon and Earth-Sun ~ —— »

Orbital Paths

forces (if one employs point masses for Earth, Moon, ML PR
Sun Moon

Sun)
ﬁle computational cost of nuclear 3-body forces cah O

be greatly reduced by decoupling low-energy parts
from high-energy parts, which can then be

discarded.
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Recently the first consistent Similarity Renormalization
Group softening of three-body forces was achieved, with
rapid convergence in helium. With this faster convergence,

calculations of larger nuclei are possible!
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The challenge and the prospect: NN force

600 ik ' L\f?t\
500 f 1 | - = =
400 E
300t = This work
200 k * W - NLO
BBSvK - NLO
100 + Experiment
0
| ‘ | | | |
0.0 : - : : 0 200 400 600
r [fm] m_ [MeV]
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and Phys. Rev. C 88, 024003 (2013)



Optimizing the nuclear force

input matters: garbage in, garbage out

* The derivative-free minimizer POUNDERS * Used a coarse-grained representation of the
was used to systematically optimize NNLO short-distance interactions with 30

chiral potentials parameters
* The optimization of the new interaction * The optimization of a chiral interaction in
NN LOopt Jields a X2/datum =~ 1 for laboratory NN scattering energies below NNLO Jields a X2/datum =~ 1 for a mutually consistent set of 6713 NN

125 MeV. The new interaction yields very good agreement with binding energies scattering data

and radii for A=3,4 nuclei and oxygen isotopes e  Covariance matrix yields correlation between LECCs and predictions with error

° Ongoing: Optimization of NN + 3NF bars.

Navarro Perez, Amaro, Arriola,
Phys. Rev. C 89, 024004 (2014) and

A. Ekstrom et al., Phys. Rev. Lett. 110, 192502 arXiv:1406.0625
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http://science.energy.gov/np/highlights/2014/np-2014-05-e/




Deuteron, Light Nuclel



Deuteron

Binding energy 2.225 MeV
Spin, parity 1"

Isospin 0

Magnetic moment n=0.857 pp;
Electric quadrupole moment Q=0.282¢ fm2

1+, =2.79241, ~1.913 11, = 0.8794,

v, )=0.98]°S)+0.20'D,)

produced by tensor forcel

V[MeV]
~100

Hydrogen molecule
b= 0,39-10%cm

/b

Binding energy
= 4,47 eV

Deuteron
b= 0,5fm

Binding ene
= 2,239M6V oy




Nucleon-Nucleon Interaction
NN, NNN. NNNN, ... forces

GFMC calculations tell us that:




Few-nucleon systems
(theoretical struggle)

L g

‘ A=2: many years ago...

F
g N
’E - 3H: 1984 (1% accuracy)

e Faddeev

e Schroedinger
3He: 1987

4He: 1987

5He: 1994 (n-0 resonance)

A=6,7,..12: 1995-2014
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