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Challenge:
Analyze this using QCD and QED:
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The Basic Question: 

Starting with the Standard Model, 
how can we make predictions at 

different length scales?



What is duality?

image from JLab website

Dualities exist where there are multiple
 descriptions of the same physical situation.



Dualities Abound in SUSY and 
String Theory

11-dimensional supergravky

FIGURE 4. THE MYSTERIOUS QUANTUM
WORLD OF M-THEORY, with some of the

previously known theories as different classical
limits (weak coupling). Via a web of dualities,

each of these weakly coupled theories can be
interpreted as infinite-coupling limits of others.
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One of the main problems is to understand quark
confinement. As discussed above, some sort of relation of
confinement to duality was conjectured in the 1970s.
There are many other mysteries about the vacuum struc-
ture of gauge theories. In general, one would like to be
able to determine what symmetries are broken, and what
particles have low mass, in a given four-dimensional gauge
theory, such as QCD.

These problems were a prime focus of particle physics
in the mid-to-late 1970s. Many qualitative results were
obtained by a variety of methods, including lattice strong-
coupling expansions, computer simulations, 1/N expan-
sions and matching relations between short-distance and
long-distance calculations. In the 1980s and 1990s, com-
puter simulations of QCD improved steadily But the
study of more general four-dimensional gauge theories was
clearly in need of new ideas.

The new idea that was brought to bear in the last
few years was, in the first instance, simply to study these
questions in the supersymmetric case. Supersymmetric
gauge theories (for instance, the supersymmetric extension
of QCD) exhibit many of the phenomena that can occur
without supersymmetry, but supersymmetry brings much
simplification and enables one to settle questions that
otherwise are out of reach.

Investigations along these lines in the last few years
gave many new results of a sort that physicists had
speculated about in the 1970s without being able to exhibit
them in concrete models.6 (See PHYSICS TODAY, March
1995, page 17.) Examples included strange patterns of
symmetry breaking and the appearance of exotic massless
bound states. The results were elegant and surprising;
they also seemed disparate and impossible to unify.

Convergence
In the last three years, it has become clear that these
things are all part of one story.

The new gauge theory results should be derived from
non-Abelian duality, generalizing that of Montonen and
Olive. Such duality is often to be derived from string
theory. Certain of the supergravity symmetries carry over
to string theory, where they generalize the dualities that
spelled the doom of spacetime as a fundamental notion.
The result is a very new perspective on field theory and
string theory.

In field theory, we now understand (as sketched in figure
3) that not just quark confinement but the whole range of
surprises of strongly coupled field theory should be derived
from duality, at least in the supersymmetric case.

For string theory the change in viewpoint is perhaps
even wider and includes the discovery that there is only
one theory.

For weak coupling the five string theories—and the
wild card, eleven-dimensional supergravity—are all differ-
ent. That is why they have been traditionally understood
as different theories. Understanding them as different
limits of one theory requires understanding what happens
for strong coupling.

The novelty of the last couple of years, in a nutshell,
is that we have learned that the strong-coupling behavior
of supersymmetric string theories and field theories is
governed by a web of dualities relating different theories.
When one description breaks down because a coupling
parameter becomes large, another description takes over.

For instance, in uncompactified ten-dimensional
Minkowski space, the strong-coupling limit of the type I
superstring is the weakly coupled heterotic SO 32) super-
string; the strong-coupling limit of the type IIA superstring
is related to eleven-dimensional supergravity; the strong-
coupling limit of type IIB superstring theory is equivalent
to the same theory at weak coupling; and the strong-cou-
pling limit of the E8 x E8 heterotic string involves eleven-
dimensional supergravity again.

From this list, and additional items that appear after
compactifying some dimensions, we learn that the differ-
ent theories are all one. The different supertheories
studied in different ways in the last generation are dif-
ferent manifestations of one underlying, and still myste-
rious, theory, sometimes called M-theory, where M stands
for magic, mystery or membrane, according to taste.7 This
theory is the candidate for superunification of the forces
of nature. It has eleven-dimensional supergravity and all
the traditionally studied string theories among its possible
low-energy manifestations.

The relations between the different string theories
often look at low energies like the electric-magnetic du-
ality of Maxwell's equations. Knowledge of string theory
dualities has shed much light on field theory dualities,
and vice versa.

To understand these dualities, we have had to learn
about new degrees of freedom in string theory, such as
D-branes (quantum versions of objects that were first
found as solitonic solutions of supergravity).8 As an illus-
tration of the power of the new insight, it has become
possible for the first time—with the aid of the new vari-
ables—to count the quantum states of a black hole (in
certain cases), thereby settling a longstanding problem.9
(See PHYSICS TODAY, March 1997, page 19.)
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An Example of Duality: 
The 2D Ising Model

pictures) if u0 < 0 instead. The special critical point of the Blume-Capel model corresponds to
tuning of two parameters, which corresponds to vanishing of both the m2 and m4 coe⌅cients in
the Landau free energy (r0 = 0 and u0 = 0): this picture correctly predicts that the tricritical
point should separate first-order and second-order transitions. This Landau form has far-reaching
consequences: such a “tricritical” point has di�erent exponents in mean field theory.

This tricritical point also has upper critical dimension 3 rather than 4, so mean-field theory is
exact in three dimensions, and the above scenario for the phase diagram can be confirmed in detail.
As an example of a critical exponent which is di�erent from the ordinary critical point (“bicritical”)
MFT value, consider ⇥: now we have, adding a linear term proportional to H,

�⌅

�m
= 0⌅ m ⇤ H5 ⌅ ⇥ = 5 (3)

when before we had ⇥ = 3. Similarly for �, we now have

�⌅

�m
= 0⌅ tm ⇤ m5 (4)

or � = 1/4 instead of 1/2 in the bicritical case.

High- and low-temperature expansions and duality of the 2D Ising model

Why do we believe conjectures such as scaling and universality at critical points? Frequently
predictions can be tested by exact results, especially on lattice models in two dimensions. We start
by considering the isotropic 2D Ising model on the square lattice with rescaled coupling K = �J :

��E = K
X

⇥ij⇤
⇤i⇤j . (5)

At T = 0, the partition function is just Z = 2eNbK , where Nb is the number of bonds of the
lattice and the factor of 2 comes from spin-up and spin-down configurations. At slightly higher
temperatures, we expect that the partition function will be dominated by configurations where
patches of spins have flipped from the background state. We can describe such a state in terms of
paths (possibly disconnected) that separate background spins from the flipped patches: if such a
path P crosses ⌘(P ) bonds, then the energy increase relative to the ground state is 2J⌘(P ). The
partition function can thus be written as

Z = 2eNbK
X

P

e�2K⌅(P ). (6)

Note that these paths do not connect sites of the original lattice, but instead connect squares or
“plaquettes”: it is natural to think of such paths as connecting sites of the “dual lattice” formed
by putting a site at the center of each square of the original lattice. The square lattice is somewhat
special in that its dual lattice is also a square lattice.

What about high temperatures? The partition function is

Z =
X

s

e
P

�ij⇥ Ksisj =
X

s

Y

⇥ij⇤
eKsisj =

X

s

Y

⇥ij⇤
(coshK + sisj sinhK) (7)

where we have taken advantage of the fact that sisj = ±1 in the last equality. Now rewrite this as

Z = (cosh K)Nb
X

s

Y

⇥ij⇤
(1 + sisj tanh K) (8)

2

T=0 Low T

(from Joel Moore’s Phys 212 course notes at Berkeley)

sum over bonds

si = ±1
��E = K

X
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= 0⌅ tm ⇤ m5 (4)

or � = 1/4 instead of 1/2 in the bicritical case.

High- and low-temperature expansions and duality of the 2D Ising model

Why do we believe conjectures such as scaling and universality at critical points? Frequently
predictions can be tested by exact results, especially on lattice models in two dimensions. We start
by considering the isotropic 2D Ising model on the square lattice with rescaled coupling K = �J :

��E = K
X

⇥ij⇤
⇤i⇤j . (5)

At T = 0, the partition function is just Z = 2eNbK , where Nb is the number of bonds of the
lattice and the factor of 2 comes from spin-up and spin-down configurations. At slightly higher
temperatures, we expect that the partition function will be dominated by configurations where
patches of spins have flipped from the background state. We can describe such a state in terms of
paths (possibly disconnected) that separate background spins from the flipped patches: if such a
path P crosses ⌘(P ) bonds, then the energy increase relative to the ground state is 2J⌘(P ). The
partition function can thus be written as

Z = 2eNbK
X

P

e�2K⌅(P ). (6)

Note that these paths do not connect sites of the original lattice, but instead connect squares or
“plaquettes”: it is natural to think of such paths as connecting sites of the “dual lattice” formed
by putting a site at the center of each square of the original lattice. The square lattice is somewhat
special in that its dual lattice is also a square lattice.

What about high temperatures? The partition function is
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where we have taken advantage of the fact that sisj = ±1 in the last equality. Now rewrite this as
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pictures) if u0 < 0 instead. The special critical point of the Blume-Capel model corresponds to
tuning of two parameters, which corresponds to vanishing of both the m2 and m4 coe⌅cients in
the Landau free energy (r0 = 0 and u0 = 0): this picture correctly predicts that the tricritical
point should separate first-order and second-order transitions. This Landau form has far-reaching
consequences: such a “tricritical” point has di�erent exponents in mean field theory.

This tricritical point also has upper critical dimension 3 rather than 4, so mean-field theory is
exact in three dimensions, and the above scenario for the phase diagram can be confirmed in detail.
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paths (possibly disconnected) that separate background spins from the flipped patches: if such a
path P crosses ⌘(P ) bonds, then the energy increase relative to the ground state is 2J⌘(P ). The
partition function can thus be written as

Z = 2eNbK
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Note that these paths do not connect sites of the original lattice, but instead connect squares or
“plaquettes”: it is natural to think of such paths as connecting sites of the “dual lattice” formed
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and imagine expanding the resulting polynomial in powers of tanhK. Now if a particular spin, say
si, appears an odd number of times in one term, then that term will give zero when si is summed
over. So the only terms that survive are again closed (possibly disconnected) paths in which every
site appears 0, 2, or 4 times. The partition function is then, written as a sum over paths on the
original (not dual) square lattice,

Z = 2Ns(coshK)Nb
�

P

(tanh K)⌅(P ). (9)

where the factor 2Ns comes from the sum over states.

Now we can compare the high-temperature and low-temperature expansions and note an in-
teresting property. Both expansions consist of a smooth prefactor multiplying a summation over
paths, and any phase transition or other singular property must result from the behavior of the
summation. However, the two summations are the same if we identify

e�2K�
= tanhK ⇥ K⇥ = �1

2
log tanhK. (10)

where K⇥ is the coupling in the low-temperature expansion and K the coupling in the high-
temperature coupling. There seems to be a connection (a self-duality) between the high-temperature
and low-temperature behavior of this model.

Dualities like this are very important in modern physics because they connect weak coupling
in one problem to strong coupling in another problem; then the perturbative methods for weak
coupling in one problem can be used to get information about strong coupling in the other problem.
A self-duality is a duality between di�erent regimes of the same model. Including overall factors in
the duality argument above predicts that, for the isotropic model with uniform couplings,
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Here the original K and the dual K⇥ are related through the relation derived above, K⇥ =
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2 log tanhK, or after some simple algebra,

sinh(2K) sinh(2K⇥) = 1. (12)

So as K increases, K⇥ decreases. If there is a single transition, then the thermodynamic singularities
of both sides of (11) must be located at the same spot, so

sinh(2Kc) = 1. (13)

Since sinh�1(1) = log(1 +
⇤

2), this predicts

Kc =
1
2

log(1 +
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2). (14)

This result for the critical temperature was known from this Kramers-Wannier duality before On-
sager’s exact solution.

More on marginal operators
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point should separate first-order and second-order transitions. This Landau form has far-reaching
consequences: such a “tricritical” point has di�erent exponents in mean field theory.

This tricritical point also has upper critical dimension 3 rather than 4, so mean-field theory is
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patches of spins have flipped from the background state. We can describe such a state in terms of
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Note that these paths do not connect sites of the original lattice, but instead connect squares or
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and imagine expanding the resulting polynomial in powers of tanhK. Now if a particular spin, say
si, appears an odd number of times in one term, then that term will give zero when si is summed
over. So the only terms that survive are again closed (possibly disconnected) paths in which every
site appears 0, 2, or 4 times. The partition function is then, written as a sum over paths on the
original (not dual) square lattice,

Z = 2Ns(coshK)Nb
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(tanh K)⌅(P ). (9)

where the factor 2Ns comes from the sum over states.

Now we can compare the high-temperature and low-temperature expansions and note an in-
teresting property. Both expansions consist of a smooth prefactor multiplying a summation over
paths, and any phase transition or other singular property must result from the behavior of the
summation. However, the two summations are the same if we identify
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2
log tanhK. (10)

where K⇥ is the coupling in the low-temperature expansion and K the coupling in the high-
temperature coupling. There seems to be a connection (a self-duality) between the high-temperature
and low-temperature behavior of this model.

Dualities like this are very important in modern physics because they connect weak coupling
in one problem to strong coupling in another problem; then the perturbative methods for weak
coupling in one problem can be used to get information about strong coupling in the other problem.
A self-duality is a duality between di�erent regimes of the same model. Including overall factors in
the duality argument above predicts that, for the isotropic model with uniform couplings,
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2 log tanhK, or after some simple algebra,

sinh(2K) sinh(2K⇥) = 1. (12)

So as K increases, K⇥ decreases. If there is a single transition, then the thermodynamic singularities
of both sides of (11) must be located at the same spot, so

sinh(2Kc) = 1. (13)

Since sinh�1(1) = log(1 +
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2), this predicts
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This result for the critical temperature was known from this Kramers-Wannier duality before On-
sager’s exact solution.
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tuning of two parameters, which corresponds to vanishing of both the m2 and m4 coe⌅cients in
the Landau free energy (r0 = 0 and u0 = 0): this picture correctly predicts that the tricritical
point should separate first-order and second-order transitions. This Landau form has far-reaching
consequences: such a “tricritical” point has di�erent exponents in mean field theory.

This tricritical point also has upper critical dimension 3 rather than 4, so mean-field theory is
exact in three dimensions, and the above scenario for the phase diagram can be confirmed in detail.
As an example of a critical exponent which is di�erent from the ordinary critical point (“bicritical”)
MFT value, consider ⇥: now we have, adding a linear term proportional to H,
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Why do we believe conjectures such as scaling and universality at critical points? Frequently
predictions can be tested by exact results, especially on lattice models in two dimensions. We start
by considering the isotropic 2D Ising model on the square lattice with rescaled coupling K = �J :
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At T = 0, the partition function is just Z = 2eNbK , where Nb is the number of bonds of the
lattice and the factor of 2 comes from spin-up and spin-down configurations. At slightly higher
temperatures, we expect that the partition function will be dominated by configurations where
patches of spins have flipped from the background state. We can describe such a state in terms of
paths (possibly disconnected) that separate background spins from the flipped patches: if such a
path P crosses ⌘(P ) bonds, then the energy increase relative to the ground state is 2J⌘(P ). The
partition function can thus be written as
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Note that these paths do not connect sites of the original lattice, but instead connect squares or
“plaquettes”: it is natural to think of such paths as connecting sites of the “dual lattice” formed
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and imagine expanding the resulting polynomial in powers of tanhK. Now if a particular spin, say
si, appears an odd number of times in one term, then that term will give zero when si is summed
over. So the only terms that survive are again closed (possibly disconnected) paths in which every
site appears 0, 2, or 4 times. The partition function is then, written as a sum over paths on the
original (not dual) square lattice,

Z = 2Ns(coshK)Nb
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P

(tanh K)⌅(P ). (9)

where the factor 2Ns comes from the sum over states.

Now we can compare the high-temperature and low-temperature expansions and note an in-
teresting property. Both expansions consist of a smooth prefactor multiplying a summation over
paths, and any phase transition or other singular property must result from the behavior of the
summation. However, the two summations are the same if we identify

e�2K�
= tanhK ⇥ K⇥ = �1

2
log tanhK. (10)

where K⇥ is the coupling in the low-temperature expansion and K the coupling in the high-
temperature coupling. There seems to be a connection (a self-duality) between the high-temperature
and low-temperature behavior of this model.

Dualities like this are very important in modern physics because they connect weak coupling
in one problem to strong coupling in another problem; then the perturbative methods for weak
coupling in one problem can be used to get information about strong coupling in the other problem.
A self-duality is a duality between di�erent regimes of the same model. Including overall factors in
the duality argument above predicts that, for the isotropic model with uniform couplings,
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N
� log cosh(2K⇥). (11)

Here the original K and the dual K⇥ are related through the relation derived above, K⇥ =
�1

2 log tanhK, or after some simple algebra,

sinh(2K) sinh(2K⇥) = 1. (12)

So as K increases, K⇥ decreases. If there is a single transition, then the thermodynamic singularities
of both sides of (11) must be located at the same spot, so

sinh(2Kc) = 1. (13)

Since sinh�1(1) = log(1 +
⇤

2), this predicts

Kc =
1
2

log(1 +
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2). (14)

This result for the critical temperature was known from this Kramers-Wannier duality before On-
sager’s exact solution.

More on marginal operators
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This is called Kramers-Wannier duality.  
It is a strong-weak coupling duality: 

When K is large (small), K is small 
(large). One description is simpler at 
high T, and the other at low T.

*
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over. So the only terms that survive are again closed (possibly disconnected) paths in which every
site appears 0, 2, or 4 times. The partition function is then, written as a sum over paths on the
original (not dual) square lattice,
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where the factor 2Ns comes from the sum over states.

Now we can compare the high-temperature and low-temperature expansions and note an in-
teresting property. Both expansions consist of a smooth prefactor multiplying a summation over
paths, and any phase transition or other singular property must result from the behavior of the
summation. However, the two summations are the same if we identify
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where K⇥ is the coupling in the low-temperature expansion and K the coupling in the high-
temperature coupling. There seems to be a connection (a self-duality) between the high-temperature
and low-temperature behavior of this model.

Dualities like this are very important in modern physics because they connect weak coupling
in one problem to strong coupling in another problem; then the perturbative methods for weak
coupling in one problem can be used to get information about strong coupling in the other problem.
A self-duality is a duality between di�erent regimes of the same model. Including overall factors in
the duality argument above predicts that, for the isotropic model with uniform couplings,
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This result for the critical temperature was known from this Kramers-Wannier duality before On-
sager’s exact solution.
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This is called Kramers-Wannier duality.  
It is a strong-weak coupling duality: 

When K is large (small), K is small 
(large). One description is simpler at 
high T, and the other at low T.
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Critical temperature: singularities in K, K  at 
same point.
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What does this have to do 
with particle physics?

There’s an analogy:
QCD is adequately described at high 
energies by quarks and gluons.

However, at low energies a hadronic 
description is “better.”

Definition: Better = Simpler/More weakly 
coupled



The Running Coupling
A theory may be better described by varying 
the couplings as the scale of interest 
changes, by integrating out short-distance 
fluctuations. 

Renormalization of couplings can be thought 
of as a type of duality. 
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A theory may be better described by varying 
the couplings as the scale of interest 
changes, by integrating out short-distance 
fluctuations. 

Renormalization of couplings can be thought 
of as a type of duality. 
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Asymptotic Freedom
Running of the QCD coupling takes into 
account the renormalization of the gluon 
propagator, the vertex, and the quark lines.

The result is an effective description valid 
around a specified renormalization scale M.
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Exercise: The one-loop beta function is 
negative in QCD. 
Hence, the QCD coupling decreases at high 
energies. This is asymptotic freedom.
(Politzer; Gross, Wilczek - 1973)
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Exercise: The one-loop beta function is 
negative in QCD. 
Hence, the QCD coupling decreases at high 
energies. This is asymptotic freedom.
(Politzer; Gross, Wilczek - 1973)
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WQuestion: What about SU(2)  ?
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The central value is determined as the weighted average of the individual measurements.
For the error an overall, a-priori unknown, correlation coefficient is introduced and
determined by requiring that the total χ2 of the combination equals the number of
degrees of freedom. The world average quoted in Ref. 172 is

αs(M2
Z) = 0.1184 ± 0.0007 ,

with an astonishing precision of 0.6%. It is worth noting that a cross check performed in
Ref. 172, consisting in excluding each of the single measurements from the combination,
resulted in variations of the central value well below the quoted uncertainty, and in a
maximal increase of the combined error up to 0.0012. Most notably, excluding the most
precise determination from lattice QCD gives only a marginally different average value.
Nevertheless, there remains an apparent and long-standing systematic difference between
the results from structure functions and other determinations of similar accuracy. This
is evidenced in Fig. 9.2 (left), where the various inputs to this combination, evolved to
the Z mass scale, are shown. Fig. 9.2 (right) provides strongest evidence for the correct
prediction by QCD of the scale dependence of the strong coupling.

0.11 0.12 0.13
α  (Μ  )s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

τ-decays (N3LO)

DIS  jets (NLO)

e+e? jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e? jets & shapes (NNLO) 

Υ decays (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100Q [GeV]

Heavy Quarkonia
e+e?  Annihilation
Deep Inelastic Scattering

July 2009

Figure 9.2: Left: Summary of measurements of αs(M2
Z), used as input for the

world average value; Right: Summary of measurements of αs as a function of the
respective energy scale Q. Both plots are taken from Ref. 172.
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FIG. 1: (color online) αs,g1
(Q)/π obtained from JLab (triangles and open stars) and world (open

square) data on the Bjorken sum. Also shown are αs,τ (Q)/π from OPAL data, the GLS sum result

from the CCFR collaboration (stars) and αs,g1
(Q)/π from the Bjorken (band) and GDH (dashed

line) sum rules.

We fit the data using a functional form that resembles the pQCD evolution equation for

αs, with an additional term mg(Q) that prevents αfit
s,g1

from diverging when Q2 → Λ2 and

another term n(Q) that forces αfit
s,g1

to π when Q2 → 0. Note that the latter constraint is a

consequence of both the generalized GDH and Bjorken sum rules [5]. Our fit form is:

αfit
s,g1

=
γn(Q)

log(
Q2+m2

g(Q)

Λ2 )
(2)

where γ = 4/β0 = 12/(33 − 8), n(Q) = π(1 + [ γ
log(m2/Λ2)(1+Q/Λ)−γ + (bQ)c]−1) and mg(Q) =

from CLAS spin structure function 
data-Deur, Burkert, Chen, Korsch
arxiv:0803.4119
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Where are the 
resonances?

Perturbative QCD predicts smoothly-
varying cross sections down to some 
scale      .  It does not (easily) predict 
the resonances observed in scattering 
experiments.  Confinement in hadronic 
states is a nonperturbative 
phenomenon.

⇤QCD



Confinement
There are no asymptotic colored states in 
QCD.  Color charge is confined.
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Confinement
Meson interpolating operators can be made 
from a quark and an antiquark field

u
d

uSU(3)
u Pion
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3x3 = 1 +8



Confinementeven a pure Coulomb potential, σ = 0, implies a non-vanishing σeff at finite t ! r.
Of course, the symmetry of the Wilson loop under interchange of r and t also implies
that no plateau in V (r, t) can be found, unless t " r. For smeared Wilson loops, one
would still expect a similar 1/t2 approach (with a different coefficient) of σeff towards
the asymptotic limit, while effective masses, V (r, t), will approach V (r) exponentially
fast at any r.

4.7.2 The quenched potential
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Figure 4.2: The quenched Wilson action SU(3) potential, normalised to V (r0) = 0.

In Figure 4.2, we display the quenched potential, obtained at three different β values
in units of r0 ≈ 0.5 fm from the data of Refs. [173, 29]. The lattice spacings, determined
from r0, correspond to a ≈ 0.094 fm, 0.069 fm and 0.051 fm, respectively. The curve
represents the Cornell parametrisation with e = 0.295. At small distances the data
points lie somewhat above the curve, indicating a weakening of the effective coupling
and, therefore, asymptotic freedom. We will discuss this observation later. All data
points for r > 4a collapse onto a universal curve, indicating that for β ≥ 6.0 the scaling
region is effectively reached for the static potential. Moreover, continuum rotational
symmetry is restored: in addition to on-axis separations, many off-axis distances of the
sources have been realised and the corresponding data points are well parameterised by
the Cornell fit for r > 0.6 r0. Prior to comparison between the potential at various β,
the additive self-energy contribution, associated with the static sources, that diverges
in the continuum limit has been removed. This is achieved by the parametrisation-
independent normalisation of the data to V (r0) = 0.
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Confinement
So, are quarks confined?

u u
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u u
d
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The down quark has 
been liberated from 
the proton!

gluon flux tube

Question: What if the quark 
masses were all much larger 
than the (energy density)   
in the gluon flux tube?
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Confinement

6 ARTHUR JAFFE AND EDWARD WITTEN

One hopes that the continued mathematical exploration of quantum field theory
will lead to refinements of the axiom sets that have been in use up to now, perhaps
to incorporate properties considered important by physicists such as the existence
of an operator product expansion or of a local stress-energy tensor.

4. The Problem

To establish existence of four-dimensional quantum gauge theory with gauge
group G, one should define a quantum field theory (in the above sense) with local
quantum field operators in correspondence with the gauge-invariant local polyno-
mials in the curvature F and its covariant derivatives, such as TrFijFkl(x).1 Cor-
relation functions of the quantum field operators should agree at short distances
with the predictions of asymptotic freedom and perturbative renormalization the-
ory, as described in textbooks. Those predictions include among other things the
existence of a stress tensor and an operator product expansion, having prescribed
local singularities predicted by asymptotic freedom.

Since the vacuum vector ⇥ is Poincaré invariant, it is an eigenstate with zero
energy, namely H⇥ = 0. The positive energy axiom asserts that in any quantum
field theory, the spectrum of H is supported in the region [0,⇤). A quantum field
theory has a mass gap � if H has no spectrum in the interval (0,�) for some � > 0.
The supremum of such � is the mass m, and we require m < ⇤.
Yang–Mills Existence and Mass Gap. Prove that for any compact simple gauge
group G, a non-trivial quantum Yang–Mills theory exists on R4 and has a mass gap
� > 0. Existence includes establishing axiomatic properties at least as strong as
those cited in [45, 35].

5. Comments

An important consequence of the existence of a mass gap is clustering: Let
�x ⌅ R3 denote a point in space. We let H and �P denote the energy and momentum,
generators of time and space translation. For any positive constant C < � and for
any local quantum field operator O(�x) = e�i⌥P ·⌥xOei⌥P ·⌥x such that ⌃⇥,O⇥⌥ = 0, one
has

(2) |⌃⇥,O(�x)O(�y)⇥⌥| ⇥ exp(�C|�x� �y|),
as long as |�x��y| is su⌅ciently large. Clustering is a locality property that, roughly
speaking, may make it possible to apply mathematical results established on R4 to
any 4-manifold, as argued at a heuristic level (for a supersymmetric extension of
four-dimensional gauge theory) in [49]. Thus the mass gap not only has a physical
significance (as explained in the introduction), but it may also be important in
mathematical applications of four-dimensional quantum gauge theories to geometry.
In addition the existence of a uniform gap for finite-volume approximations may
play a fundamental role in the proof of existence of the infinite-volume limit.

There are many natural extensions of the Millennium problem. Among other
things, one would like to prove the existence of an isolated one-particle state (an
upper gap, in addition to the mass gap), to prove confinement, to prove existence of

1A natural 1–1 correspondence between such classical ‘di�erential polynomials’ and quantized
operators does not exist, since the correspondence has some standard subtleties involving renor-
malization [27]. One expects that the space of classical di�erential polynomials of dimension � d
does correspond to the space of local quantum operators of dimension � d.
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What physical 
evidence is 
there for the 
mass gap in 
QCD? Question



Quark-Hadron Duality
Poggio-Quinn-Weinberg (1976):

Argued that certain inclusive hadronic 
cross sections, averaged with appropriate 
weighting factors over appropriately high 
energy ranges, could be calculated 
perturbatively in terms of quarks and 
gluons.

This is called global quark-hadron duality.



Quark-Hadron Duality

Inclusive cross sections in 
inelastic electron-proton 
scattering follow scaling 
relations (on average), even 
in resonance region.

Bloom, Gilman, Phys. Rev. Lett. 85 (1970) 1185

148 W. Melnitchouk et al. / Physics Reports 406 (2005) 127–301

Fig. 9. Early proton !W2 structure function data in the resonance region, as a function of "′, compared to a smooth fit to the
data in the scaling region at largerQ2. The resonance data were obtained at the indicated kinematics, withQ2 in GeV2, for the

longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [3].)

perturbative QCD (as will be discussed in Section 4). Nevertheless, the astute observations made by

Bloom and Gilman are still valid, and may be summarized as follows:

I. The resonance region data oscillate around the scaling curve.

II. The resonance data are on average equivalent to the scaling curve.

III. The resonance region data “slide” along the deep inelastic curve with increasingQ2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the resonances are

not a separate entity but are an intrinsic part of the scaling behavior of !W2” [2].

In order to quantify these observations, Bloom and Gilman drew on the work on duality in hadronic

reactions to determine a FESR equating the integral over ! of !W2 in the resonance region, to the integral

over "′ of the scaling function [2],

2M

Q2

∫ !m

0

d! !W2(!, Q
2) =

∫ 1+W 2
m/Q2

1

d"′!W2("
′) . (63)

Here the upper limit on the ! integration, !m = (W 2
m −M2+Q2)/2M , corresponds to the maximum value

of "′ = 1 + W 2
m/Q2, where Wm ∼ 2GeV, so that the integral of the scaling function covers the same

range in "′ as the resonance region data. FESR (63) allows the area under the resonances in Fig. 9 to
be compared to the area under the smooth curve in the same "′ region to determine the degree to which
the resonance and scaling data are equivalent. A comparison of both sides in Eq. (63) for Wm = 2GeV

showed that the relative differences ranged from∼ 10%atQ2=1GeV2, to!2%beyondQ2=2GeV2 [3],
thus demonstrating the near equivalence on average of the resonance and deep inelastic regimes (point II

above). Using this approach, Bloom andGilman’s quark–hadron duality was able to qualitatively describe

the data in the range 1!Q2!10GeV2.

scaling curve
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Quark-Hadron Duality
Bloom-Gilman Duality -1970

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182
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Quark-Hadron Duality
Consider e e    qq+ - -

6 40. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 40.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section
of this Review, Eq. (9.12) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)).
Breit-Wigner parameterizations of J/ψ, ψ(2S), and Υ (nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the
details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available
at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2007. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.)) See full-color version on color pages at end of book.
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Quark-Hadron Duality
Consider elastic electron-positron scattering:

+

q

q

+ ...

= + + ...
nV

Vector mesons



Quark-Hadron Duality
Peskin & Schroeder, Ch 18

k

k’

k’

k

q
s = q2

Optical Theorem:
�(e+e� ! anything) =

1
2s

ImM(e+e� ! e+e�)

(Final momenta,spins = Initial momenta,spins)

qe-

e+

e+

e-



Quark-Hadron Duality
Peskin & Schroeder, Ch 18

k

k’

k’

k

q
s = q2

Optical Theorem:
�(e+e� ! anything) =

1
2s

ImM(e+e� ! e+e�)

(Final momenta,spins = Initial momenta,spins)

qe-

e+

e+

e-



Quark-Hadron Duality
Peskin & Schroeder, Ch 18

k

k’

k’

k

q
s = q2

Optical Theorem:
�(e+e� ! anything) =

1
2s

ImM(e+e� ! e+e�)

(Final momenta,spins = Initial momenta,spins)

q

iM = (�ie)2v(k0)�µu(k)
�i

s
(i⇧µ⌫(q))

�i

s
u(k)�⌫v(k0)

e-

e+

e+

e-



Quark-Hadron Duality
Peskin & Schroeder, Ch 18

k

k’

k’

k

q
s = q2

Optical Theorem:
�(e+e� ! anything) =

1
2s

ImM(e+e� ! e+e�)

(Final momenta,spins = Initial momenta,spins)

q

i⇧µ⌫(a) =
Z

d

4
x e

iq·xh0|T {Jµ(x)J⌫(0)} |0i

iM = (�ie)2v(k0)�µu(k)
�i

s
(i⇧µ⌫(q))

�i

s
u(k)�⌫v(k0)

e-

e+

e+

e-



Quark-Hadron Duality
Peskin & Schroeder, Ch 18

k

k’

k’

k

q

=
�
q2gµ⌫ � qµq⌫

�
⇧(q2)

s = q2

Optical Theorem:
�(e+e� ! anything) =

1
2s

ImM(e+e� ! e+e�)

(Final momenta,spins = Initial momenta,spins)

q

i⇧µ⌫(a) =
Z

d

4
x e

iq·xh0|T {Jµ(x)J⌫(0)} |0i

iM = (�ie)2v(k0)�µu(k)
�i

s
(i⇧µ⌫(q))

�i

s
u(k)�⌫v(k0)

e-

e+

e+

e-



Quark-Hadron Duality and the 
Operator Product Expansion

Shifman, “The Quark-Hadron Duality” - 2003
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At short distances we can try to expand 
perturbatively in local operators.
Operator Product Expansion:
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Resonance model:

Perturbative QCD:
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Vector mesons
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The resulting relations between
and perturbative OPE coefficients are called 
ITEP Sum Rules
(Novikov,Shifman,Vainshtein,Voloshin,Zakharov)

At sufficiently high s, the OPE is relatively 
accurate.

At smaller s, resonances dominate but 
averages over resonances still agree roughly 
with the perturbative results.

Quark-Hadron Duality
�(e+e� ! hadrons)



Dualities Lecture 1 Summary
Dualities exist when there are multiple 
descriptions of the same physics.

The high-energy (>2 GeV) quark/gluon regime 
and low-energy (<2 GeV) resonance regime 
can sometimes be connected by quark-hadron 
duality.

One can understand aspects of quark-hadron 
duality by way of the Operator Product 
Expansion, which also helps to identify 
sources of duality violations.


