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2. IR/UV Regulators and Renormalization Methods

 |Rand UV properties of the Harmonic Oscillator (HO)

* IR and UV properties of NN interactions

* Okubo-Lee-Suzuki (OLS) renormalization scheme in the HO basis
* Similarity Renormalization Group (SRG) approach



Motivation: The 3D Harmonic Oscillator (HO) is both a pedagogical tool
and the practical basis-of-choice in a variety of many-body theories

Notation for a single-particle system:
|ar) = 3D Harmonic Oscillator (HO) basis state

o represents complete set of quantum numbers
o = {na,la,ja,mja T,
|dentity operator:

1= Y Ja)al= Yo, , (o

where @ represents the HO energy 7iw
when used as a label

|dentity operator in momentum representation:
(k|1|k") =6k —k')
(|6 = (2x) 2 &




Recall some basic definitions for the HO

HH0|(X>:E06|(X> o = {na’la’mla}
E,=2n,+1,+3/2)hw

(Flo)=o.(7)
With the normalized HO wavefunction in coordinate space defined
In terms of the generalized Laguerre polynomials as
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“Walkthrough” of HO wavefunctions
nim =221 & superposition: 111+331

Challenge: Can you predict the locations of the zeroes (red)?



The normalized HO wavefunction in momentum space defined as
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Simple example of IR and UV regulators

Lattice Gauge Theory:
A= L' = inverse of linear dimension
A =a' = inverse of lattice spacing
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=> What are the IR and UV regulators of an HO basis?




Let us suppress the role of spin and isospin for the present so that

o = {na,la,mla}

Define the projected identity operator (the completeness relation
limited to a finite basis space (model space)) at a chosen omega.
We further take the basis to consist of all states in all HO shells
up to a cutoff N.

N
=>"|o), (| where N=max(2n+1)

Now examine the momentum space matrix elements <k‘1N,w ‘k'>

which satisfy

1im<k\1 \ > Sk—k)=

N—00

K=K 520, —,)




Let us split up our truncated identity operator into contributions
from each orbital angular momentum:

N
Iy, = yl: S:|O‘>w RUIE ZI:IIN,w,la]

Then, let us select a single orbital angular momentum’s contribution

to the truncated completeness relation, put this into a momentum space
representation, integrate over the angles and introduce the HO energy
for a convenient scale factor. The resulting quantity is then defined as:

(k|T, k)= fdQ d, (kL ,.|k)

N=2n+lI

=ho2l+1) Y R, (k)R, (k)

Now observe the progression toward the delta function (times energy)
in k as N increases towards the “infinite basis limit” in the next slide.
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Projected Identity Operator (S-waves)
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Kinetic Energy (S-waves) — Banded Structure
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For simplicity, we examine the local limit in momentum space,

perform an angle average, multiply by an integration measure
k2 and define the resulting quantity as:

o=k [dQ (K1, |K)= 1,00 N=max@n+1D)

which has a normalization = the number of single-particle states included
in N+1 HO shells. Now, we evaluate that normalization:

fdk I, (k)= %(N +1)(N +2)(N +3) =N = number of sp states
0

For example, there is N=1 state when N=0, N=4 when N=1, N=10
when N=2, N=20 when N = 3, N=35 when N =4, etc.,

The quantity 7,, (k) defined above is labeled with alternative parameters
representing the basis space parameters (V,®) and will be examined
below in more detail.



Recall the quantity defined above:
I, (K=K f d, (k|1 ,|K) =1, (0)

The indicated labels signify infrared (IR) and ultraviolet (UV)
parameters of the 3D HO and are defined as follows:

A= mo = inverse rms radius of state in N+1 HO shell,
(N —I—%)h the adopted IR regulator implicit in the basis

A= \/(N _|_%)m% = rms momentum of state in N+1 HO shell,
a typical UV regulator implicit in the basis

Below, we will examine how well these IR and UV parameters track
the momentum space region for the basis defined by (N ,m)

This UV regulator is defined as the momentum arising from an
application of the virial theorem to any state in the N+1 HO shell:

(S 12
2m [ 2) 2
Next, we will consider an alternative to this UV regulator, which

Is a factor of Sqrt(2) larger and based on another property of any
state in the N+1 HO shell. The alternative will be called A,




The “Kallio momentum”, ky,, defines the effective momentum for a
spherical Bessel function that provides an accurate representation
for a HO wavefunction near the origin in either momentum space
(for a fixed radius) or coordinate space (for a fixed momentum.
For example, as r -> 0 the HO potential energy vanishes so the
Schroedinger solution locally resembles the free-particle equation.
For the N+1 HO shell, the total energy is then the kinetic energy:

hk: o 3
ZmN :[N+§]ha)
for which
Rnl(r) — F(”l—l—l _I_%) 21+2j (k l")
r mlU(N+3) T

Ex: Verify this relation in relative coordinate space
with (n,l) = (3,0) and hw = 40 MeV.

This leads to the definition of an alternative UV regulator

A=y = 2N+ 3)mo /7 =2A




Let us investigate the connection between 3D HO wavefunctions
and 3D plane waves in momentum space in more detail. We define

b, =by2(N +3/2) =\/2(N+3/2)h
ma

and we consider the specific case where

m = reduced mass of 2 equal mass nucleons
k = relative momentum between the 2 nucleons

With these choices, we add a superscript “NN” to the regulators
since NN interactions are defined in relative coordinates.
In Fig. 1 below, we consider the specific case defined by:

AN =0.225fm™'
AW =2.141fm™
AM =3.027fm™'

Note that there is no need to discuss the CM motion of the two
nucleons at the present time but we will return to this issue below
when addressing 2-nucleon states
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Figure 1a Comparison of 3D HO radial wavefunction with spherical Bessel
function in momentum space. The related IR and UV regulators are listed.



Let us now consider a representative measure of how a truncated
HO basis space spreads over a region of momentum space. We first
take the specific case of N = 8 and examine how the IR and UV
parameters indicate the spread of HO states in momentum space.

We then consider the spread in momentum space as a function of N
at iw =40 MeV.
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Fig. 3 Integrands for projected identity operator (N = 8) vs relative momentum, normalized by the
number of single-particle states (165). Rectangles represent the range from the IR to UV regulators.
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Fig. 4 Integrands for projected identity operator vs k at three values of N, normalized by the number
of single-particle states (N). Vertical edges of rectangles represent IR & UV regulators as indicated.



Next, we consider the identity operator projected onto a finite space (N)
In a particular orbital angular momentum channel so that

where

(N—1)/2

L ()= Q1+ Y R (K)]

In Figure 5 we present the particular L=0 case for N=8 and
hw=40 MeV (normalized by the number of S-states in that HO basis
= N/2 + 1) and compare with several additional quantities.
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Fig. 5 Comparison of momentum-space integrands (see legend) as a function
of relative momentum. Vertical lines represent regulators as labelled.



For reference — recall JISP16 S-wave Gaussian regulators
(N =8, hw=40 MeV)

A =0.225fm™ <m_, =0.684fm™
AM = 3.027fm™!

Also recall the chiral N3LO exponential regulators

A ~m_=0.684fm™"
AM ~30fm™!

Converting to Gaussian regulators (HO representation)
as performed by the Trento group”

A =0.129fm™"
AM =3.940fm™"'

*N. Barnea, W. Leidemann and G. Orlandini, Phys. Rev. C 81, 064001 (2010)
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Combined IR and UV extrapolation:
HO-basis regulator definitions

Ref. 1 Ref. 2 Ref. 3

UV: A Jw+3pma  hav+3pma | 2 +35mne

I R_ A mh mh< mh<
' (N + %) 2N +34) 2N +3)

N Nmax " 1 Nmax - 2 Nmax - 3
(p-shell)

E(AA)~E_+Be '8 4 B e 2=/

1S.A. Coon, M.I. Avetian, M.K.G. Kruse, U. van Kolck, P. Maris, and J.P. Vary,
Phys. Rev. C 86, 054002 (2012); arXiv: 1205.3230

2R.J. Furnstahl, G. Hagen, T. Papenbrock, Phys. Rev. C 86 (2012) 031301
3E.D. Jurgenson, P. Maris, R.J. Furnstahl, P. Navratil, W.E. Ormand, J.P. Vary,
Phys. Rev. C 87, 054312(2013); arXiv 1302.5473



The above discussion has simplified the full 3D space to
a 1D slice of that space. For a more complete discussion
of the fully non-local 3D operators, see A. Negoita, PhD
thesis, lowa State University, 2010.



We will work in a HO basis to solve for the eigenstates of
nuclear Hamiltonians using realistic NN + NNN interactions.

How do we obtain interactions with IR and UV regulators
matched to our choice of basis space (“model space”)?

In other words, how do we derive the effective interactions
appropriate to the basis space in which we solve the problem?



No Core Shell Model
A large sparse matrix eigenvalue problem

H=T

rel

H‘LPi>:Ei

¥)=2.4,
n=0

Diagonalize {(®, |H|®, )}

Adopt realistic NN (and NNN) interaction(s) & renormalize as needed - retain induced
many-body interactions: Chiral EFT interactions and JISP16
Adopt the 3-D Harmonic Oscillator (HO) for the single-nucleon basis states, «, B, ...

Evaluate the nuclear Hamiltonian, H, in basis space of HO (Slater) determinants
(manages the bookkeepping of anti-symmetrization)

Diagonalize this sparse many-body H in its “m-scheme” basis where [o. =(n,l,j,m; T,)]
+ +
|(j[)n> — [aa 000 ]n|0>
n=12....,10" or more!
Evaluate observables and compare with experiment

+ Vi T Viy T 000
W)

l
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Comments
 Straightforward but computationally demanding => new algorithms/computers
e Requires convergence assessments and extrapolation tools
e Achievable for nuclei up to A=20 (40) today with largest computers available



ab initio NCSM

Effective Hamiltonian for A-Particles
Okubo-Lee-Suzuki Method plus Cluster Decomposition

P. Navratil, J.P. Vary and B.R. Barrett,
Phys. Rev. Lett. 84, 5728(2000); Phys. Rev. C62, 054311(2000)
C. Viazminsky and J.P. Vary, J. Math. Phys. 42, 2055 (2001);
S. Okubo, Progr. Theor. Phys. 12 (1954) 603;
K. Suzuki and S.Y. Lee, Progr. Theor. Phys. 64, 2091(1980);
K. Suzuki, ibid, 68, 246(1982);
Review: B.R. Barrett, P. Navratil and J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013)

Preserves the symmetries of the full Hamiltonian:
Rotational, translational, parity, etc., invariance

(p, )2
rel + V Z[ ‘/l]] + VNNN
i<j

Select a finite oscillator basis space (P-space) and evaluate an
a- body cluster effective Hamiltonian:

7 =P|T,+V (N, hQ)|P

Guaranteed to provide exact answersas a > A orasP— 1,

rel max ?



Effective Hamiltonian in the NCSM
Okubo-Lee-Suzuki renormalization scheme

o0

P
> H: EL,E,E,...E, ,...E
P Heg ’ Hy: E.E, E,...E,

—1 model space
QXH X P — O dimderisign

Q o '
QXHXQ H_ =PXHX'P

25

NCSM: Nmax = 6 configuration

Harmonic Oscillator with mQ2/2 = 1
"8hQ" configuration

N
o

* n-body cluster approximation, 2<n<A
« H"_ n-body operator
« Two ways of convergence:

— ForP—>1 H"4— H

— For n— A and fixed P: H" . — H_ g

-y
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Potential Energy

\_ef /
Nmax =6\ 7/
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Adapted from Petr Navratil’s slide & 0 R
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Controlling the center-of-mass (cm) motion
in order to preserve Galilean invariance

Add a Lagrange multiplier term acting on the cm alone
so as not to interfere with the internal motion dynamics

H (N o Q) = P[T,,, + V(N . HQ) 1P
H=H,(N,, Q) @
P 1
H =—+—M,Q°R’
OM, 2 ‘

A ~10 suffices
Along with the N_, truncation in the HO basis, ARC
the Lagrange multiplier term guarantees that
all low-lying solutions have eigenfunctions that

factorize into a 0s HO wavefunction for the cm
times a translationaly invariant wavefunction.

Approx.
} copy of

low-lying

spectrum

Low-lying
“physical”
spectrum



Key equations to solve at the a-body cluster level

Solve a cluster eigenvalue problem in a very large but finite basis
and retain all the symmetries of the bare Hamiltonian

F, = Zlapxapl

PeP

0, = 2|O‘Q)<O‘Q|

QeQ
Bl +Qa zla

H? k)= E,|k)
(ocQ |cu|ocp) = I;((anleg‘(xP}

where : <l€ ‘OCP> = Inverse{(k|ocp >}

HY =P +0" 0)"*(P,+ Po"Q)H*(Q 0P, + P )P, + 0 w) "



SRG Similarity Renormalization Group

F. Wegner Ann. Phys. (Leipziqg) 3, 77 (1994)
SRG flow: series of unitary transformations

H =U)HU (s)=T ,+V,
=[n(s).H,]

Hs evolves according to

dU (s)

with  7(s)= U'(s)=-1"(s)

Choice for n(s), specifies the transformation:  77(s) = [Tre;,H ]

dH
ds

The actual flow equation is: =77, H ] H ]

1
More convenient flow parameter A1=s * which we use as the UV regulator

Note possible source of confusion here as we generally use A asthe
notation for the the UV regular but here, we defer to conventional practice

for SRG of using A . The final SRG potential is then:



Similarity Renormalization Group — NN interaction

® SRG evolution Bogner, Furnstahl, Perry, PRC 75 (2007) 061001

k'Z (fm?) k'Z (fm™?) k'Z (fm?) k' (fm?) k' (fm™?)

00481204812048120481204812 05

— 4
E g ‘ \ 0 (fm)

= 12 -1 -1
A =2.0 fm A =15 fm

-0.5

» drives interaction towards band-diagonal structure
» SRG shifts strength between 2-body and many-body forces

® |nitial chiral EFT Hamiltonian
power-counting hierarchy A-body forces

VNN > VNN > VNNNN

» Key issue: preserve hierarchy of many-body forces




Changing the resolution:
The (Similarity) Renormalization Group

* common choice for generator

relative kinetic energy operator G =1T':

1 1
=20.0 f s
S *=20.0fm 1s0 % =20.0 fm’ !
K (fm ) 1
15,
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SRG evolution slides from Kai Hebeler, ECT* workshop, June 2013



Changing the resolution:

The (Similarity) Renormalization Group
Eventually, we reach a convenient softened interaction as shown below:

* common choice for generator
relative kinetic energy operator G =1T':
%
'sy A =2.0fm™"

k' (fm 1)
0.5
Y05

-0.5

K (fm )

SRG evolution slides from Kai Hebeler, ECT* workshop, June 2013



Improve convergence rate by applying SRG to N3LO

4He e =2
wwN =4
_15_| N I |||||w‘;-l—; | T 1 |||||| ||||| II HN =6
i ] max
- ) - _l —
B i =2.
0ok . E A=20fm _10
- y ~12
25|
- N°LO (500 MeV)
=301, | |
B | |

RN N BTN ERR 4 ¥

Ground-State Energy [MeV |

20 25 30 35 40 10 15 20 25 30
HhQ [MeV] HhQ [MeV]

(Bogner, Furnstahl, Maris, Perry, Schwenk, Vary, NPA801, 21 (2008), arXiv:0708.3754)




Effect of three-body forces

L |
14 0 2 4 6 8 10 12 14 0 2 4 6
ut Nmn cut N__cut

=20 | T T T T -7 I T T T T T T T 1 T T T T T

2 6 T T 5 ]
—_—22f | 4+ F 4 A=10 fm_l J
2 -23F. : 5 ;e T o A=12fm | ]
= b . hQ=20MeV § "5 R T A=15 ﬁn‘: b
= b ' | R T P A=18fm™| -
9_25 R Nima =40 T KRR T < A=20fm|
O 26" " 1 .—"8'..' a V.. ___ , =2 =
@_27;* R N, =300 T iy 2 Ih v A=22fm | ]
B T s T T T 8 . ]
5 30p " : v. T T . - .
£ 31 N g e T T g e .
O _32 -_<_ - : t ;--_ _--_ ‘-.._. : AR T T -

-33 NN-only * . NN+NNN-induced + NNINNN g s -

-34 PR T | | | I | | | PR TS N TR NS NN S| PR IR | | T R |

0 2 4 6 8 10 12
C

(Jurgenson, Navratil, Furnstahl, PRC83, 034301 (2011), arXiv:1011.4085)

® Induced 3NF significantly reduce dependence on SRG parameter
» N2LO 3NF

# Dbinding energy in agreement with experiment

# may need induced 4NF?
® Seecited paper A=7—-12results




An Important Message

Chiral EFT generates a sequence of terms for any observable starting from

the standard model (SM). Take, for example, electroweak (EW) couplings

to the Quarks in the SM. Chiral perturbation theory defines how pions and nucleons
couple with these EW operators — that is, it provides consistent one-body, two-body,
etc., current operators.

Note, that previous discussions of scheme dependence carry through to these
operators as well.

If we go to lower scales with renormalization (e.g. OLS, SRG) we need to
perform these transformations on the chiral EFT operators to maintain
consistency in the evaluation of EW observables. This renormalization
gives rise to additional “induced” currents.

A number of applications have appeared where chiral EFT is used to generate
EW operators through some order (e.g. NLO) but very few have appeared that
carry out the additional renormalizations when SRG or OLS renormalizations
were used for the Hamiltonian => lots of work lies ahead!




Coupling to External Probes in Chiral EFT

71 Nuclear Current Operators

Smgle nucleon current 1 pion exchange | Contact term
0Q), 0Q@) o)
4P - --+

Two-Body Currents (N?LO)

C3,Cq C,C3,C4 Cp

Slide by P. Wiecki



14C beta decay - detailed results and estimated
corrections due to chiral 2-body currents

TABLE I. Decomposition of p-shell contributions to Mgy in
the LS scheme for the beta decay of '*C without and with 3NF.
The 3NF is included at two values of ¢p where ¢p = —0.2 is
preferred by the *H lifetime and ¢, = —2.0 is preferred by the
14C lifetime. The calculations are performed in the N, = 8
basis space with i{) = 14 MeV.

Table | from:

P. Maris, J.P. Vary,

P. Navratil, W.E. Ormand,
H. Nam and D.J. Dean,
Phys. Rev. Lett. 106,
202502 (2011)

(my,m;) NNonly NN+ 3NF ¢p= —02 NN+ 3NF¢cp=—20

2

Tritium half-life
Cs) = -0.20 -2.0
Thy/Exp.= 1.00 0.80

(1,+3) 0.015 0.009 0.009
(1,— 1) —~0.176 —0.296 —~0.280
(0, +1) 0.307 0277 0.283
(0, -1 0.307 0277 0.283
(—=1,+4 —0.176 -(.296 -0.280
(-1,-1 Q015 0.009 0.009
Subtotal 0.292 -0.019 0.024
Total sum 0275 -(0.063 -0.013

2-body current l l

quenching (est’ d)*  x 0.75=>-0.047 x 0.93 =>-0.012

Preliminary

*)J. Menéndez, D. Gazit and A. Schwenk, Phys.Rev.Lett. 107 (2011) 062501
(estimated using their effective density-dependent 1-body operator)




Questions?



