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2.	
  IR/UV Regulators and Renormalization Methods	
  



Notation for a single-particle system: 

Identity operator: 
 

! !  3D Harmonic Oscillator (HO) basis state
!  represents complete set of quantum numbers

!  =  n! ,l! , j! ,mj!
," z!{ }

Identity operator in momentum representation: 
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where "  represents the HO energy !"  
when used as a label

Motivation: The 3D Harmonic Oscillator (HO) is both a pedagogical tool 
and the practical basis-of-choice in a variety of many-body theories 



Recall some basic definitions for the HO 
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With the normalized HO wavefunction in coordinate space defined  
In terms of the generalized Laguerre polynomials as 
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“Walkthrough” of HO wavefunctions 
nlm = 221   &   superposition: 111+331 

Challenge:  Can you predict the locations of the zeroes (red)? 



The normalized HO wavefunction in momentum space defined as 
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Lattice Gauge Theory:
! = L!1 = inverse of linear dimension
" = a!1 = inverse of lattice spacing

Simple example of IR and UV regulators 

=> What are the IR and UV regulators of an HO basis? 



Let us suppress the role of spin and isospin for the present so that 

 
!  =  n! ,l! ,ml!{ }

Define the projected identity operator (the completeness relation  
limited to a finite basis space (model space)) at a chosen omega. 
We further take the basis to consist of all states in all HO shells  
up to a cutoff N.  
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Now examine the momentum space matrix elements  
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Then, let us select a single orbital angular momentum’s contribution 
to the truncated completeness relation, put this into a momentum space  
representation, integrate over the angles and introduce the HO energy 
for a convenient scale factor.  The resulting quantity is then defined as: 

Let us split up our truncated identity operator into contributions 
from each orbital angular momentum: 

Now observe the progression toward the delta function (times energy)  
in k as N increases towards the “infinite basis limit” in the next slide. 



Projected Identity Operator (S-waves) 

N=14  N=30 N=62 

N=126 N=254 N=510 

~UV scale 



Kinetic Energy (S-waves) – Banded Structure 

N=14 N=30 N=62 

N=126 N=254 N=510 



For simplicity, we examine the local limit in momentum space,  
perform an angle average, multiply by an integration measure 
k2 and define the resulting quantity as: 
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which has a normalization = the number of single-particle states included  
in N+1 HO shells.  Now, we evaluate that normalization:  
 
 
 
For example, there is    =1 state when N=0,    = 4 when N=1,    =10  
when N=2,    =20 when N = 3,    =35 when N = 4, etc.,  
 

= number of sp states   

 ! !

The quantity          defined above is labeled with alternative parameters  
representing the basis space parameters           and will be examined  
below in more detail. 
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= inverse rms radius of state in N+1 HO shell, 
   the adopted IR regulator implicit in the basis 

= rms momentum of state in N+1 HO shell, 
   a typical UV regulator implicit in the basis  

Below, we will examine how well these IR and UV parameters track 
the momentum space region for the basis defined by  (N ,! )
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Recall the quantity defined above: 

The indicated labels signify infrared (IR) and ultraviolet (UV) 
parameters of the 3D HO and are defined as follows: 

This UV regulator is defined as the momentum arising from an 
application of the virial theorem to any state in the N+1 HO shell:  
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Next, we will consider an alternative to this UV regulator, which 
is a factor of  Sqrt(2) larger and based on another property of any 
state in the N+1 HO shell.  The alternative will be called  !a



The “Kallio momentum”, kN, defines the effective momentum for a  
spherical Bessel function that provides an accurate representation  
for a HO wavefunction near the origin in either momentum space 
(for a fixed radius) or coordinate space (for a fixed momentum.  
For example, as r -> 0 the HO potential energy vanishes so the  
Schroedinger solution locally resembles the free-particle equation.  
For the N+1 HO shell, the total energy is then the kinetic energy: 

for which  
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Ex:  Verify this relation in relative coordinate space  
with (n,l) = (3,0) and hw = 40 MeV. 
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This leads to the definition of an alternative UV regulator 



  
bN = b 2(N + 3 / 2)= 2(N + 3 / 2)!

m!
and we consider the specific case where 
 
m = reduced mass of 2 equal mass nucleons 
k  = relative momentum between the 2 nucleons  
 
With these choices, we add a superscript “NN” to the regulators 
since NN interactions are defined in relative coordinates.  
In Fig. 1 below, we consider the specific case defined by: 
 

Let us investigate the connection between 3D HO wavefunctions  
and 3D plane waves in momentum space in more detail.  We define 

 
Note that there is no need to discuss the CM motion of the two 
nucleons at the present time but we will return to this issue below  
when addressing 2-nucleon states 
 

 

!NN = 0.225fm!1

"NN = 2.141fm!1

"a
NN = 3.027fm!1



Figure 1a  Comparison of 3D HO radial wavefunction with spherical Bessel 
function in momentum space. The related IR and UV regulators are listed. 
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Let us now consider a representative measure of how a truncated  
HO basis space spreads over a region of momentum space. We first 
take the specific case of N = 8 and examine how the IR and UV 
parameters indicate the spread of HO states in momentum space. 
 
We then consider the spread in momentum space as a function of N  
at       = 40 MeV.  !!



Fig. 3 Integrands for projected identity operator (N = 8) vs relative momentum, normalized by the 
number of single-particle states (165). Rectangles represent the range from the IR to UV regulators. 
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Fig. 4 Integrands for projected identity operator vs k at three values of N, normalized by the number 
of single-particle states (   ). Vertical edges of rectangles represent IR & UV regulators as indicated. 
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Next, we consider the identity operator projected onto a finite space (N) 
in a particular orbital angular momentum channel so that 

where 
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In Figure  5 we present the particular L=0 case for N=8 and  
hw=40 MeV (normalized by the number of S-states in that HO basis 
= N/2 + 1) and compare with several additional quantities. 



Fig. 5  Comparison of momentum-space integrands (see legend) as a function 
of relative momentum.  Vertical lines represent regulators as labelled. 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4

In
te

gr
an

d

k (fm-1)

 m! = 0.684fm!1

 !
NN = 0.225fm!1

 !NN = 2.141fm!1  !a
NN = 3.027fm!1

 

k V 1S0( ) k  JISP16 (arb units)

k V 3S1( ) k  JISP16 (arb units)

I8,40,0 k( ) / 5 (fm)
I8,40 k( ) /165 (fm)



For reference – recall JISP16 S-wave Gaussian regulators 

Also recall the chiral N3LO exponential regulators 

 

!NN = 0.225fm!1 <m" = 0.684fm!1

#a
NN = 3.027fm!1

  (N = 8,  !!=40 MeV)

  

!NN ! m" = 0.684fm!1

#a
NN ! 3.0fm!1

Converting to Gaussian regulators (HO representation) 
as performed by the Trento group* 

 

!NN = 0.129fm!1

"a
NN = 3.940fm!1

*N. Barnea, W. Leidemann and G. Orlandini, Phys. Rev. C 81, 064001 (2010) 





Combined IR and UV extrapolation: 
HO-basis regulator definitions 

1S.A. Coon, M.I. Avetian, M.K.G. Kruse, U. van Kolck, P. Maris, and J.P. Vary,  
Phys. Rev. C 86, 054002 (2012);  arXiv: 1205.3230 
2R.J. Furnstahl, G. Hagen, T. Papenbrock, Phys. Rev. C 86 (2012) 031301 
3E.D. Jurgenson, P. Maris, R.J. Furnstahl, P. Navratil, W.E. Ormand, J.P. Vary,  
Phys. Rev. C 87, 054312(2013); arXiv 1302.5473  

Put this in terms of Lambda_UV  and lambda_IR 

Ref. 1 Ref. 2 
 

Ref. 3 
 

UV:  Λ 

IR:   λ 
 

     N  
(p-shell) 

  Nmax + 1 
 

  Nmax + 2 
 

 Nmax + 3 
 



The above discussion has simplified the full 3D space to 
a 1D slice of that space.  For a more complete discussion 
of the fully non-local 3D operators, see A. Negoita, PhD 
thesis, Iowa State University, 2010. 



We will work in a HO basis to solve for the eigenstates of 
nuclear Hamiltonians using realistic NN + NNN interactions. 
 
How do we obtain interactions with IR and UV regulators 
matched to our choice of basis space (“model space”)? 
 
In other words, how do we derive the effective interactions 
appropriate to the basis space in which we solve the problem? 



•  Adopt realistic NN (and NNN) interaction(s) & renormalize as needed - retain induced 
many-body interactions: Chiral EFT interactions and JISP16 

•  Adopt the 3-D Harmonic Oscillator (HO) for the single-nucleon basis states, α, β,… 
•  Evaluate the nuclear Hamiltonian, H,  in basis space of HO (Slater) determinants 

(manages the bookkeepping of anti-symmetrization) 
•  Diagonalize this sparse many-body H in its “m-scheme” basis where [α =(n,l,j,mj,τz)] 

 
•  Evaluate observables and compare with experiment 

                                                 Comments 
•   Straightforward but computationally demanding => new algorithms/computers 
•   Requires convergence assessments and extrapolation tools 
•   Achievable for nuclei up to A=20 (40) today with largest computers available 
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n = 1,2,...,1010  or more!

No Core Shell Model  
A large sparse matrix eigenvalue problem  
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H !i = Ei !i

!i = An
i

n= 0

"

# $n

Diagonalize $m H $n{ }



    

 

HA = Trel + V = [
( ! p i !

! 
p j )2

2mA
+ Vij

i< j

A

" ] + VNNN

P. Navratil, J.P. Vary and B.R. Barrett, 	


Phys. Rev. Lett. 84, 5728(2000); Phys. Rev. C62, 054311(2000)	


C. Viazminsky and J.P. Vary, J. Math. Phys. 42, 2055 (2001);	



S. Okubo, Progr. Theor. Phys. 12 (1954) 603;	


K. Suzuki and S.Y. Lee, Progr. Theor. Phys. 64, 2091(1980);	



K. Suzuki, ibid, 68, 246(1982);	


Review: B.R. Barrett, P. Navratil and J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013)	



 	


Preserves the symmetries of the full Hamiltonian:	


Rotational, translational, parity, etc., invariance	



	



ab initio NCSM	


Effective Hamiltonian for A-Particles	



Okubo-Lee-Suzuki Method plus Cluster Decomposition	



Select a finite oscillator basis space (P-space) and evaluate an	


  - body cluster effective Hamiltonian:	



Guaranteed to provide exact answers as              or as           .       	
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Heff = P Trel +V a (Nmax,!!)[ ]P
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Q
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•  n-body cluster approximation,  2≤n≤A 
•   H(n)

eff    n-body operator 
•   Two ways of convergence: 

–   For P → 1    H(n)
eff →  H 

–   For n → A and fixed P: H(n)
eff → Heff 

Heff 0

0 QXHX-1Q

  

 

H : E1, E2, E3,…EdP
,…E!

  

 

Heff : E1, E2, E3,…EdP

 

QXHX!1P = 0

 

Heff = PXHX!1P
X = ! !+exp[ arctan ( )]h " "unitary 

model space  
dimension 

Effective Hamiltonian in the NCSM 
Okubo-Lee-Suzuki renormalization scheme 

Adapted from 
Petr Navratil 
 

Adapted from Petr Navratil’s slide 



Controlling the center-of-mass (cm) motion  
in order to preserve Galilean invariance 

Add a Lagrange multiplier term acting on the cm alone 
so as not to interfere with the internal motion dynamics 

  

H = Heff Nmax ,!!( )+"Hcm

Hcm = P2

2MA

+ 1
2
MA!

2R2

" "10  suffices

Low-lying 
“physical”  
spectrum 

Approx. 
copy of 
low-lying  
spectrum 

 !!"Along with the Nmax truncation in the HO basis, 
the Lagrange multiplier term guarantees that 
all low-lying solutions have eigenfunctions that  
factorize into a 0s HO wavefunction for the cm 
times a translationaly invariant wavefunction. 

  Heff Nmax ,!!( )! P[Trel +V a Nmax ,!!( )]P



  

 

H (a) = (Pa +!T!)"1/ 2(Pa + Pa!
TQa )Ha
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! k = Ek k
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Key equations to solve at the a-body cluster level	



Solve a cluster eigenvalue problem in a very large but finite basis	


and retain all the symmetries of the bare Hamiltonian	





srels VTsHUsUH +≡= + )()(

)()()()( ssU
ds
sdUs ++ −== ηη

[ ]srel HTs ,)( =η

SRG flow: series of unitary transformations 

Hs evolves according to 

with  

Choice for η(s), specifies the transformation: 

The actual flow equation is: 

More convenient flow parameter 4
1−

= sλ

[ ]ss Hs
ds
dH ),(η=

[ ][ ]ssrels HHT
ds
dH ,,=

F. Wegner  Ann. Phys. (Leipzig) 3, 77 (1994)  

Our particular choice of η(s) was  

 

η(s) = Hrel
HO,Hs[ ]

We solve the new  flow equation in finite HO basis  [ ][ ]
ds
dVHHH

ds
dH s
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HO
rel

s == ,,

∫ ×+= = ds
ds
dVVV s

ss 0
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hΩ = 40MeV

SRG Similarity Renormalization Group 

which we use as the UV regulator 

 
Vs =Vs=0 + dV

ds! ds

Note possible source of confusion here as we generally use        as the  
notation for the the UV regular but here, we defer to conventional practice 
for SRG of using     .  The final SRG potential is then: 

!

!





Gλ = T

Changing the resolution: 
The (Similarity) Renormalization Group

• common choice for generator

relative kinetic energy operator                :

SRG	
  evolu-on	
  slides	
  from	
  Kai	
  Hebeler,	
  ECT*	
  workshop,	
  June	
  2013	
  



Gλ = T

Changing the resolution: 
The (Similarity) Renormalization Group

• common choice for generator

relative kinetic energy operator                :

λ = 2.0 fm−1
λ = 2.0 fm−1

Eventually,	
  we	
  reach	
  a	
  convenient	
  soTened	
  interac-on	
  as	
  shown	
  below:	
  	
  

SRG	
  evolu-on	
  slides	
  from	
  Kai	
  Hebeler,	
  ECT*	
  workshop,	
  June	
  2013	
  





(LLNL,	
  Iowa	
  State,	
  TRIUMF)	
  See	
  cited	
  paper	
  A	
  =	
  7	
  –	
  12	
  results	
  



Chiral	
  EFT	
  generates	
  a	
  sequence	
  of	
  terms	
  for	
  any	
  observable	
  star-ng	
  from	
  
the	
  standard	
  model	
  (SM).	
  	
  Take,	
  for	
  example,	
  electroweak	
  (EW)	
  couplings	
  	
  
to	
  the	
  Quarks	
  in	
  the	
  SM.	
  	
  Chiral	
  perturba-on	
  theory	
  defines	
  how	
  pions	
  and	
  nucleons	
  	
  
couple	
  with	
  these	
  EW	
  operators	
  –	
  that	
  is,	
  it	
  provides	
  consistent	
  one-­‐body,	
  two-­‐body,	
  
etc.,	
  current	
  operators.	
  	
  	
  
	
  
Note,	
  that	
  previous	
  discussions	
  of	
  scheme	
  dependence	
  carry	
  through	
  to	
  these	
  
operators	
  as	
  well.	
  
	
  
If	
  we	
  go	
  to	
  lower	
  scales	
  with	
  renormaliza-on	
  (e.g.	
  OLS,	
  SRG)	
  we	
  need	
  to	
  
perform	
  these	
  transforma-ons	
  on	
  the	
  chiral	
  EFT	
  operators	
  to	
  maintain	
  
consistency	
  in	
  the	
  evalua-on	
  of	
  EW	
  observables.	
  	
  This	
  renormaliza-on	
  	
  
gives	
  rise	
  to	
  addi-onal	
  “induced”	
  currents.	
  
	
  
A	
  number	
  of	
  applica-ons	
  have	
  appeared	
  where	
  chiral	
  EFT	
  is	
  used	
  to	
  generate	
  
EW	
  operators	
  through	
  some	
  order	
  (e.g.	
  NLO)	
  but	
  very	
  few	
  have	
  appeared	
  that	
  
carry	
  out	
  the	
  addi-onal	
  renormaliza-ons	
  when	
  SRG	
  or	
  OLS	
  renormaliza-ons	
  
were	
  used	
  for	
  the	
  Hamiltonian	
  =>	
  lots	
  of	
  work	
  lies	
  ahead!	
  
	
  

An	
  Important	
  Message	
  



Slide	
  by	
  P.	
  Wiecki	
  



14C beta decay - detailed results and estimated 
corrections due to chiral 2-body currents 

2-body current  
quenching (est’d)*      x 0.75 => -0.047         x 0.93 => -0.012     

*J.	
  Menéndez,	
  D.	
  Gazit	
  and	
  A.	
  Schwenk,	
  Phys.Rev.Lei.	
  107	
  (2011)	
  062501	
  
	
  (es-mated	
  using	
  their	
  effec-ve	
  density-­‐dependent	
  1-­‐body	
  operator)	
  

	
  	
  	
  Tri-um	
  half-­‐life	
  	
  
cD	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  	
  -­‐0.20	
  	
  	
  	
  	
  -­‐2.0	
  
Thy/Exp.	
  =	
  	
  1.00	
  	
  	
  	
  	
  0.80	
  

Preliminary 

Table	
  I	
  from:	
  
P.	
  Maris,	
  J.P.	
  Vary,	
  	
  
P.	
  Navra-l,	
  W.E.	
  Ormand,	
  	
  
H.	
  Nam	
  	
  and	
  D.J.	
  Dean,	
  	
  	
  
Phys.	
  Rev.	
  Lei.	
  106,	
  	
  
202502	
  (2011)	
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