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#
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consistent picture from
 m

any observables 

exp. evidence for log(Q
2) 

   fall-off is persuasive

confinem
ent 

asym
p. freedom

S. Bethke, arX
iv:0908.1135
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asym
ptotic freedom

 ‘‘only‘‘ enables us to com
pute 

interactions of quarks and gluons at short-distance

N
O

!

• detectors are a long-distance away
• experim

ents only see hadrons not free partons

to establish the crucial connection between theory and experim
ent

we need two m
ore things:

• infrared safety
• factorization

let‘s study electron-positron annihilation to see what this is all about ...
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   of underlying 2->2 hard
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•  angular distribution of jet
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  predicted for spin-" quarks

jets play m
ajor role in hadron-hadron collisions at TeVatron, RH
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e
+e

- annihilation: three-jet events 

about 10%
 of the events had a third jet

first discovered at
D

ESY-PETRA
 in 1979

•  jets resem
ble features

   of underlying 2->3 hard
   process

•  angular distribution of jets
   w.r.t. beam

 axis as expected
   for spin-1 gluons

•  10%
 rate consistent with

   !
s '

 0.1 (determ
ination of !

s )
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sim
plest process in pQ

CD
:

(all partons m
assless)

q
2 = s

som
e kinem

atics first:

• energy fractions
   & conservation:

)

allowed values for x
i  

lie within a triangle

  m
assless

‘‘D
alitz plot‘‘

• angles:

(other angles by cycl. perm
utation)

p
2
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at the boundaries of phase space we encounter 
special kinem

atic configurations:

• “edges”: two partons collinear

• “corners”: one parton soft

e.g.

structure reflected 
in the cross section:

 collinear singularities:
x

1 !
 1 : gluon k antiquark

x
2 !

 1 : gluon k quark

 soft gluon singularity:
      x

3 !
 0 : p

3  !
 0

   $
 x

1 !
 1 & x

2 !
 1
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soft/collinear lim
it: 

internal propagator goes on-shell 

here:
M

 =
 

note: ‘‘soft quarks‘‘ (here E
1 !

 0) never lead to singularities (canceled by num
erator)

explicit calculation yields:

logarithm
ically

    divergent
from

 |M
| 2

phase space
    factor

this structure is generic for Q
CD

 tree graphs: 

basis for parton-shower M
C codes

like PYTH
IA

, H
ERW

IG, SH
ERPA

, …
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 only tries to tell us that

           we are not doing the right thing!
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ur cross section is not defined properly, 
           it is not infrared safe!

D
o w

e observe a breakdow
n of pQ

C
D

 already here?

the lesson is:

whenever the 2->(n+1) kinem
atics collapses to an 

effective 2->n parton kinem
atics due to

• the em
ission of a soft gluon

• a collinear splitting of a parton into two partons

we have to be m
uch m

ore careful and work a bit harder!

this applies to all pQ
CD

 calculations
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m
om

entum
 space

coordinate space
Fourier transform

-->  x
- is conjugate to p

+ and x
+ is conjugate to p

-
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H
ow far does the internal on-shell parton travel in space-tim

e?

•  define k ´
 p

1 + p
3  

•  use coordinates with k
+ large and k

T = 0
•  k

2 = 2 k
+k

- '
 0 corresponds to

  soft/collinear lim
it !

 k
- sm

all 

W
hat does this im

ply for our propagator going on-shell?

large

large

sm
all

sm
all

Fourier
travels a long
distance along 
the light-cone
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so
 ...... W

hat to do with the long-distance physics
            associated with these soft/collinear singularities?
            Is there any hope that we can predict som

e
            reliable num

bers to com
pare with experim

ent?

to answer this, we have to form
ulate the

                        concept of infrared safety  
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physics behind form
al IR

 safety requirem
ent

cannot resolve soft and collinear partons experim
entally

      !
 intuitively reasonable that a theoretical calculation 

           can be infrared safe as long as it is insensitive to 
           long-distance physics (not a priori guaranteed though)  

at a level of a pQ
CD

 calculation (e.g. e
+e

- at O
(!

s ), i.e., n=2) 

!
  singularities of real gluon em

ission and virtual 
      corrections cancel in the sum

 

+
    extension of fam

ous
         theorem

s by
Kinoshita-Lee-N

auenberg
                and
      Bloch-N

ordsieck
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 hadrons

sim
plest case:

fully inclusive quantity       we don‘t care what happens at long-distance

• the produced partons will all hadronize with probability one
• we do not observe a specific type of hadron
  (i.e. sum

 over a com
plete set of states)

• we sum
 over all degenerate kinem

atic regions

infrared safe by definition

R ratio:

need to add up real and
virtual corrections 

not IR safe:
•  energy of hardest gluon in event
•  m

ultiplicity of gluons or 1-gluon cross section 
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with 3 parton-jets

approx. equivalent
infrared safety

Q
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 theory
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But what is a jet exactly?

recall:
jet ‘‘m

easure‘‘/‘‘algorithm
‘‘:

classify the final-state of
hadrons (exp.) or partons (th.)
according to the num

ber of jets

well inside: 3-jets
near edges: 2-jets

‘‘2 or 3‘‘ depends
on algorithm

jets are the central link between theory and experim
ent
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seeing vs. defining jets

clearly (?) a 2-jet event
how m

any jets do you count?

the “best” jet definition does not exist – construction is unavoidably am
biguous

basically two issues:

•  which particles/partons get put together in a jet   !
 jet algorithm

•  how to com
bine their m

om
enta                  !

 recom
bination schem

e
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•  adding an infinit. soft
   parton should not change
   the num

ber of jets

•  replacing a parton by a
   collinear pair of partons
   should not change the 
   num

ber of jets

projection to jets should be resilient to Q
CD

 & detector effects

IR safety again!

(anti-) k
T  algorithm

s are the m
ethod of choice these days

Cacciari, Salam
, Soyez  (FastJet tool)
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pQ
CD

 cannot give all the answers
but it does cover a lot of ground 

despite the “long-distance problem
” 

the concept of factorization will allow us to
com

pute cross sections for a m
uch wider 

class of processes than considered so far
(involving hadrons in the initial and/or final state)

 H
ERA

, TeVatron, JLab, RH
IC, LH

C, …, EIC 

sum
m

ary so far
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hadrons: a new
 “long distance problem

”

consider the one-particle inclusive cross section:                                  

q
p

not infrared safe by itself!

identified hadron
    e.g. (A

 = ")

not m
easured

problem
: sensitivity to long-distance physics related to particle em

ission
               along with identified/observed hadrons
          (leads to uncanceled singularities -> m

eaningless)

             general feature of Q
CD

 processes with 
observed (=identified) hadrons in the initial and/or final state
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                infrared safe and a non-calculable but universal piece

how does it work?

hadronic tensor W
µ
% :

square of the hadronic scattering am
plitude 

sum
m

ed over all final-states X
 except A

(p)

need to factorize long-distance physics
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factorization = isolating and absorbing infrared singularities
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pictorial sketch:
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entation functions

contains all long-distance interactions
hence not calculable but universal

physical interpretation: 
probability to find a hadron carrying 
a certain m

om
entum

 of parent parton

hard scattering
contains only short-distance physics
am

enable to pQ
CD

 calculations

aside: fragm
entation fcts. play an im

portant role in learning about 
           nucleon (spin) structure from

 sem
i-inclusive D

IS data by 
           CO

M
PA

SS & H
ERM

ES or from
 hadron production at RH

IC
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factorization - detailed picture

$=L,T (pol. of & *)

long-distance
not calculable

  short distance
IR safe, calculable

m
ore explicitly

where

‘‘convolution‘‘
factorization scale (arbitrary!)

characterizes the boundary between
    short and long-distance physics

physics indep. of µ
f  !

 renorm
alization group

before studying renormalization group equations 

   let’s first introduce hadrons also in the initial-state



take hom
e m

essage for part II
the Q

CD
 toolbox

!  Q
CD

 is a non-A
belian gauge theory: gluons are self-interacting

  !
 asym

ptotic freedom
 (large Q

), confinem
ent (sm

all Q
)

!  Q
CD

 calculations are singular when any two partons becom
e

   collinear or a gluon becom
es soft; basis for parton shower M

Cs

!  choose infrared/collinear safe observables for com
parison 

   between experim
ent and perturbative Q

CD

!  jets (= cluster of partons): best link between theory and exp.;
  needs a proper IR safe jet definition in theory and experim

ent

!  factorization allows to deal with hadronic processes
   introduces arbitrary scale -> leads to RGEs


