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probing hadronic structure with
weakly interacting quanta of asymptotic freedom
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typical hadronic scale O(200 MeV)
A depends on N;, pert. order and scheme
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consistent picture from many observables
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let's study electron-positron annihilation to see what this is all about .



e"e- annihilation: the QCD guinea pig

»w 1989-2000
most of the hadronic events at CERN-LEP had two back-to-back jets

Jet: pencil-like collection
of hadrons

- jets resemble features
of underlying 2->2 hard
process e =i qq

o

ONW...U,

* angular distribution of jet

axis w.r.t. beam axis as

predicted for spin-% quarks

-~

=
[3)




e"e- annihilation: the QCD guinea pig

»w 1989-2000
most of the hadronic events at CERN-LEP had two back-to-back jets

Jet: pencil-like collection
of hadrons

- jets resemble features
of underlying 2->2 hard
process e =i qq

o

ONW...U,

* angular distribution of jet

axis w.r.t. beam axis as

predicted for spin-% quarks

-~

[3)

jets play major role in hadron-hadron collisions at TeVatron, RHIC, LHC



e"e- annihilation: three-jet events

about 10% of the events had a third jet first o_a8<m.,wa ar
DESY-PETRA in 1979

- jets resemble features
of underlying 2->3 hard
process eTe = qqq

, Q
o.‘m.”.. -~

* 10% rate consistent with
a,~ 0.1 (determination of as)

- angular distribution of jets
w.r.t. beam axis as expected
for spin-1 gluons
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exploring the QCD final-state: e*e-— 3 partons

s P

- i o .
simplest process in pQCD: €' ¢ — qdg o o "
(all partons massless) 9 \
N\
=3 P2
some kinematics first:
- energy fractions o 2p;-q Ky ) M g as 2(3pi) - g sy
& conservation: ' T g Vs/2 B s
* angles: 2p1-p3 = (p1+p3)°=(q—p2)°=s—2q p>
~ .ﬁH.ﬁwAH — COS Quwv = MA”_. — %Mv
2 (other angles by cycl. permutation)
= 10<2; <1 N X;=0
1
Xq=1 massless

allowed values for x.

= : “Dalitz plot"
lie within a triangle
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collinear and soft configurations

at the boundaries of phase space we encounter "a ™\
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x,;— 1 gluon || antiquark
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general nature of these singularities

soft/collinear limit: P1
internal propagator goes on-shell ._ 3
1 1 M= » P1+P3
"ere (o1 +p3)2  2B1E3(1 - cosbya) = *
P2
explicit calculation yields:
; 013 : *dE3 do2., : :
P \ mw&mw&mww —=| = \ 213 logarithmically
: E3013 J E3 013 divergent

phase space
factor from |[M|?

note: "soft quarks" (here E;— 0) never lead to singularities (canceled by numerator)

this structure is generic for QCD tree graphs: P
| spinors P1 T P3 D3
.\._S:.TH P TS:.._. B > /
'1,3on-shell (p1 4+ p3)< . SOERITS
. q Ty
basis for parton-shower MC codes /Nav
like PYTHIA, HERWIG, SHERPA, ...
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Do we observe a breakdown of pQCD already here?

NO! Perturbative QCD only tries to tell us that
we are not doing the right thing!
Our cross section is not defined properly,
it is not infrared safel!

the lesson is:

whenever the 2->(n+1) kinematics collapses to an
effective 2->n parton kinematics due to

* the emission of a soft gluon
- a collinear splitting of a parton into two partons

we have to be much more careful and work a bit harder!

this applies to all pQCD calculations
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towards a space-time picture of the singularities

interlude: light-cone coordinates 00

P~ p*
p* = (p° £p°)/V2
p® =2pTp — 7

p~ = (p7 +m?)/2pT

=)

particle with large momentum in
+p3 direction has large p* and small p-

Fourier transform
momentum space - - coordinate space

1D
[ I

o

p-r=px” +p " —pr-Tr

--> X" is conjugate o p* and x" is conjugate to p-
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What does this imply for our propagator going on-shell?

Pi
- define k = p, + p,
- use coordinates with k* large and k= 0 | P3
« k?= 2 k'k” ~ O corresponds to o
soft/collinear limit — k™ small d
P2
How far does the internal on-shell parton travel in space-time?
+ X~ ,, X*
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k™ o~ Q.l\ + k%) /\/s small
k Fourier
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space-time picture of the singularities

What does this imply for our propagator going on-shell?

Pi
- define k = p, + p,
- use coordinates with k* large and k= 0 | g P3
« k?= 2 k'k” ~ O corresponds to o
soft/collinear limit — k™ small d
P2
How far does the internal on-shell parton travel in space-time?
0 N
k ~ /s /2 large
k™ ~ (kA4 k%)/vs smal
k Fourier
T TR — travels a long
L — H\ K large .AA_“_H_.,,,,, distance along

T == Lk T small ,....,A,._...,.._.__“_.u..._.‘. \ }m __m:+ cone
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upshot: soft/collinear singularities arise from
interactions that happen a long time after
the creation of the quark/antiquark pair

pQCD is not applicable at long-distance

SO ... What to do with the long-distance physics

associated with these soft/collinear singularities?
Is there any hope that we can predict some
reliable numbers to compare with experiment?

to answer this, we have to formulate the
concept of infrared safety
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infrared-safe observables

formal definition of infrared safety: Kunszt, Soper

study inclusive observables which do not distinguish between
(n+1) partons and n partons in the soft/collinear limit, i.e.,
are insensitive to what happens at long-distance

H .
- \ &mww

Z

do |2 measurement fcts.
_H H_ pWM AEH_. P2 v «— (define your observable)
21, dS25
1

+ \ lord BadSs— 20 13] mx\ )

awnd P1.P>. P
30 20E3d823 4 s O3 P P2, P3
+

infrared safe iff [for A=0 (soft) and O < i < 1 (collinear)]

rW_Z_lTHANvHu UL AH \/vwvzg \/wv:_v - rWZAN:., ¢ o9 uwvz_v
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physics behind formal IR safety requirement

cannot resolve soft and collinear partons experimentally

— intuitively reasonable that a theoretical calculation
can be infrared safe as long as it is insensitive to
long-distance physics (not a priori guaranteed though)

at a level of a pQCD calculation (e.g. e*e at O(«w,), i.e., n=2)
rw_z.l_lHva”_.u LR AH \/vwv,:; \/wv:‘v — rW_:_,AN:L . o8 uwv.:.v

— singularities of real gluon emission and virtual
corrections cancel in the sum

extension of famous
theorems by

Kinoshita-Lee-Nauenberg

and
Bloch-Nordsieck
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(i.e. sum over a complete set of states)
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example I: total cross section e"e-— hadrons

simplest case: Sn(p1,....pn) =1

fully inclusive quantity «— we don't care what happens at long-distance

* the produced partons will all hadronize with probability one

- we do not observe a specific type of hadron
(i.e. sum over a complete set of states)

- we sum over all degenerate kinematic regions

infrared safe by definition

R ratio: el e AN
o g QAS.T«.I > ij_\ODmv — N o o 14+A \ N
o o(ete - ptpu-) ~— V\S (1+Aqcp) need to add up real and

virtual corrections

* energy of hardest gluon in event

not IR safe:

* multiplicity of gluons or 1-gluon cross section
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example II: n-jet cross section

experiment QCD theory

~ approx. equivalent
infrared safety

a
>

real physical event theor. jet event
with 3 hadron-jets with 3 parton-jets

jets are the central link between theory and experiment

But what is a jet exactly?

N
- - M
»

recall: T, l&deolinear gy jet "measure”/"algorithm™:

e e e S0l classify the final-state of
R .- hadrons (exp.) or partons (th.)
according to the number of jets

1 &2

collinear

soft well inside: 3-jets | "2 or 3" depends
| near edges: 2-jets on algorithm
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seeing vs. defining jets

clearly (?) a 2-jet event how many jets do you count?

the "best” jet definition does not exist - construction is unavoidably ambiguous

basically two issues:

- which particles/partons get put together ina jet — jet algorithm

- how to combine their momenta — recombination scheme
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basic requirements for a jet definition

projection to jets should be resilient to QCD & detector effects

£ . adding an infinit. soft
parton should not change
the number of jets

* replacing a parton by a
collinear pair of partons
should not change the
number of jets

IR safety aga

(anti-) kr algorithms are the method of choice these days

Cacciari, Salam, Soyez (FastJet tool)
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summary so far

pQCD cannot give all the answers
but it does cover a lot of ground
despite the "long-distance problem”

the concept of factorization will allow us to
compute cross sections for a much wider

class of processes than considered so far
(involving hadrons in the initial and/or final state)

HERA, TeVatron, JLab, RHIC, LHC, ..., EIC
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hadrons: a new “long distance problem”

consider the one-particle inclusive cross section:

RN A identified hadron
N P e.g. (A =n) &Q.Am.fml 7+ X)

- dEr

2 yx hot measured

not infrared safe by itself!

problem: sensitivity to long-distance physics related to particle emission
along with identified/observed hadrons
(leads to uncanceled singularities -> meaningless)

general feature of QCD processes with
observed (zidentified) hadrons in the initial and/or final state
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factorization

strategy: try to factorize the physical observable into a calculable
infrared safe and a non-calculable but universal piece

how does it work?

\*/ p A _m_&o:mn
—, tensor
e g 4a® d3p o
E e do = 5 L5 WY 1%
\m\ = m@ M ?v..._ hadronic
X tensor
p P

hadronic tensor W : %"

square of the hadronic scattering amplitude R

summed over all final-states X except A(p) T )]

'

need to factorize long-distance physics
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concept of factorization - pictorial sketch

factorization - isolating and absorbing infrared singularities
accompanying observed hadrons

pictorial sketch:

—x— )
\?nm_amioio: functions Cw
. contains all long-distance interactions
hence not calculable but universal

physical interpretation:

probability to find a hadron carrying
a certain momentum of parent parton

hard scattering N\w%

contains only short-distance physics
amenable to pQCD calculations

aside: fragmentation fcts. play an important role in learning about
nucleon (spin) structure from semi-inclusive DIS data by
COMPASS & HERMES or from hadron production at RHIC




factorization - detailed picture

y / A A .
, 4 long-distance

not calculable

more explicitly

short distance
IR safe, calculable
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factorization - detailed picture

£ / A A .
! A long-distance

not calculable

more explicitly

short distance
IR safe, calculable

4\*

# L% : | * -
Y] : — \/ AQY Acv:\:\% 2

A=L,T (pol. of v7)

T [ET(2,Q)(1 + cos? ) + Fl(» Q) sin? ¢
dzdcos ~ 2s U A7 Az,

where W‘M,hﬁ, Q) = MU AN ® D (z

a

factorization scale (arbitrary!)
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short and long-distance physics

physics indep. of u;. — renormalization group



factorization - detailed picture

y ; A A .
! 4 long-distance

not calculable

more explicitly

short distance
IR safe, calculable

“_p L v ’ | * * *
VE) = " (@)X (@)W ¥ \,C/%/? v
A=L,T (pol. of v7)
do Tl

pes N:, Q)(1 4 cos?0) + Ff(z,Q)sin? 0|
) T.L o e
where 2 (2,Q) =) F (% r

dzdcosf  2s
- h
® D (=)
a f) ¢

"convolution” factorization scale (arbitrary!)

f(z) @ g(z) = \.H dy f Auv q(y) characterizes the vo::&o? _um+.<<mm:
ol short and long-distance physics

physics indep. of u;. — renormalization group



factorization - detailed picture

A A A A

long-distance

more mx_u_mnm._._< not calculable

t distance
e, calculable

o

VE) = ()X (@)W ¥
A=L,T (pol. of v7)

do T

factorization scale (arbitraryl)

characterizes the boundary between
short and long-distance physics

f(x) ¢

physics indep. of u;. — renormalization group



take home message for part 11
the QCD toolbox

" QCD is a non-Abelian gauge theory: gluons are self-interacting
— asymptotic freedom (large Q), confinement (small Q)

" QCD calculations are singular when any two partons become
collinear or a gluon becomes soft. basis for parton shower MCs

" choose infrared/collinear safe observables for comparison
between experiment and perturbative QCD

" jets (= cluster of partons): best link between theory and exp.:
needs a proper IR safe jet definition in theory and experiment

" factorization allows to deal with hadronic processes
introduces arbitrary scale -> leads to RGEs



