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Fundamental Symmetries : Overview

e Standard Model : Inadequacies
e Experimental Tests of Standard Model and Symmetries

e Baryon Number Violation : Proton Decay

e Parity Violation : MOLLER at JLab

e Charged Lepton Flavor Violation : uN — eN

e Electric Dipole Moment Searches : e, i, n, p, nuclei
e Precision Test of the Standard Model : Muon g-2

e Summary and Outlook

e My experience : experimentalist, worked on polarized deep-inelastic scattering, muonium hyperfine structure
(test of bound state QED), muon g-2, electron EDM searches in polar diatomic molecules, polarized proton-
proton scattering with PHENIX collaboration at RHIC - to measure Ag and Au and Ad, new muon g-2
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Standard Model : Inadequacies

e What is origin of the observed matter-antimatter asymmetry?
e SM prediction off by >6 orders of magnitude
e SM doesn't explain 1/3 relation between quark and lepton charges
e What is the origin of neutrino mass?
e What is dark matter? What is dark energy?
e Can we explain the extreme hierarchy of masses and strengths of forces?
e Why are there 3 families? Can the electroweak and strong forces be unified?

= What about gravity 777

e |s Standard Model a low-energy limit of a more fundamental theory 77
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Proton Decay, Grand Unified Theories, and Supersymmetry

e Noether : 3 conserved quantity for every continuous symmetry of Lagrangian

e Baryon number : conserved by U(1)z symmetry in SM, but broken by non-perturbative
weak effects ('t Hooft, PRL 37, 8 (1976))

= Proton can annihilate with neutron: p+n — e+, p+n — pu" + 1,

= SM proton decay rate contains pre-factor e~ 475" Ow/aqQED ny @—4m/0.0335..

soll x 10718 st < Tproton > 1019 years |

e But : baryon number violation required for creation of matter in universe
(i.e. matter-antimatter asymmetry)

e Ultimate end of universe depends on proton stability

e Proton decay predicted in many Grand Unified Theories (GUTs)
e Scale at which forces unify, Mg ~ 10'° GeV, well beyond EW scale G}l/Q ~ 250 GeV

= Proton decay fantastic probe of profound physics, far beyond reach of accelerators I
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Proton Decay, Grand Unified Theories, and Supersymmetry

Why unify forces?

= Standard model described by groups SU(3). ® SU(2); ® U(1)y with 3 distinct couplings
- can this be simplified?

— Even electroweak unification doesn'’t predict relative EM and weak couplings
= Why are there 3 generations of fermions? Why large hierarchy of masses? my,, > 10°m,
= What is the origin of neutrino mass? Are neutrinos their own anti-particles?

= What is the origin of the matter-antimatter asymmetry in the universe?

= Quarks and lepton charged weak current doublets identical, ( Vee ) , ( s,)
L L

Are they related at more fundamental level?

= Why is charge quantized? Why is Q(e) + Q(p) = 07 Why is Q(d) = Q(e)/3? Why not
Q(d) = Q(e)/57

= Higgs hierarchy problem : radiative corrections should push Higgs mass to Mp ~ 10
GeV. Explained by SUSY?

= Gravity - not explained. Dark energy, dark matter, also unexplained, ...

= Many of us will measure zero or consistency with SM for many years - but great new
physics is almost certainly there, waiting to be discovered
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SU(N) Groups

e Elements of SU(N) groups are n x n unitary matrices U with det 1 (UTU = 1, det(U)=1)

e Matrix elements are complex so nominally 2 X n X n elements; but UU =1 implies n
constraints on diagonal elements, n? — n constraints on off-diagonal, 1 constraint to make
det(U)=1 = n* — 1 independent parameters

e For SU(2) there are three independent parameters : «, 3, ~; think of Euler angles
—i(a+7)/2 B/2 — —i(a—7)/2 B/2
e COS e sin
Ule, B,7) = ( el @ MN2ginB/2 el @t/ o5 3/2 )
e Can write U = ¢! for H Hermitian (H = H', UTU = (e')1(e'H) = gl(H—HT) — 1)
e Can pick n* — 1 Hermitian matrices G, so any element U of SU(N) can be written as :

n2—1

U = exp Zi@iGi ,

i=1
e 0; are real parameters, G; are the generators of the group (n* — 1 of them)
e For SU(2), can pick three Pauli matrices o; as generators
o Finally : U = €Y, det(e”) = 1'%, so det(U)=1 implies generators (; traceless, Hermitian

e (See G. Kane, Modern Elementary Particle Physics or J.-Q. Chen, Group Representation
Theory for Physicists)
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SU(5) as a prototype GUT

e Georgi and Glashow, “Unity of All Elementary-Particle Forces”, PRL 32, 438 (1974) :
propose a minimal SU(5) as a possible GUT (minimal < smallest Higgs sector)

e Fermions in 5 and 10 representations (versus SM singlets, doublets, triplets)

d, 0 Uy —Ug| —Up —d,
/ d, \ (—ub 0 a, -u, —d,
5 = CZb , 10 = Ug —Up 0 | —up, —dp
e w ug  up | 0 e
\ -/, \ d dy dy —et 0 ),

e 10 is antisymmetric, 15 particles total, SU(5) gauge bosons enable transitions between
multiplet members (like SU(2);, mixes doublet : v+ W™ = d, e + W' = 1,)

e SU(N) generators are traceless < sum of eigenvalues is 0
e Electric charge () is linear combination of generators from SU(2); and U(1)y :

Q=Ts+Y/2
= In SU(5), @ is a (traceless) generator so sum of electric charges in a representation is zero

= Qve) +Qe7) +3Q(d) = 0 = Q(d) = Q") !
= Electric charge of quarks is related to number of flavors, Q(e™) = —Q)(p) atoms neutral,

charge quantized!
e Explain a remarkable amount, very appealing to think forces are unified
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Unification of Forces

e What about SU(N) gauge bosons?

e For SU(5) should be N? — 1 = 5% — 1 = 24 bosons, versus (3* — 1) + (22 — 1) + 1 = 12
for SM

e Displayed in matrix form as (see G. Ross, Grand Unified Theories) :

( Yrr = %B 97“92 9rb X Y] \
9or  9Gog — P g X Y
Vsu(s) = 9o v A Ys
X X X %W?’ + %B W+

\ Y; Y, Y, W- —%W?’ + %B )

e Color group SU(3) operates in first 3 rows and columns, SU(2) on last two
e Twelve new gauge bosons X;, X;, Vi, Y;, i =1,2,3

e New bosons mediate transitions between quarks and leptons
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Unification of Forces

e Interaction part of SU(5) Lagrangian (see C. Quigg) :

Lin = =Gy (i Nu+dy"\'d) = ZW, (L' 7' Lo+ Ly'7' L)

———B > Y
fermions

—% {X;’a ( 137" e + diytel + eamﬂ?fy”uﬁ) + H.C.} +

+ {Y (dd}ﬂ Vi + aiyte] + €apy WMdV) + H.C.}

V2

e Doublets L given by L, = (ZL,) L, = (Ve)
d ), ¢ /L

e First three terms are from SM, though now with single coupling g5
e Color SU(3) a=1..8, SU(2) i1 =1,2,3, a« =1,9,b, cindicates anti-particle
e X bosons (electric charge -4/3) and Y (electric charge -1/3) mediate quarks < leptons

e X, Y boson exchange will allow baryon number violation = proton decay

Fundamental Symmetries National Nuclear Physics Summer School, Stony Brook University, July 15-26, 2013 D. Kawall, 9



Proton decay in SU(5)

et u® u et u® u et u® u
| | 1 A & [}
X ‘ Y | v
| [} A [ | [}
o u u u o u E u u
et d® d et d® d
| | { |
r
X
! | 4
u u d u u d

(Paul Langacker, Scholarpedia)

e See possible decay mode : p — et + 7"

e What about proton lifetime? Estimate similar to 7,

My \ " 125(87)° M} M}
T, = ( W) ( 7;) X ?/ S0 expect T, X —f.)(
My, G e m) my

e What do we use for new gauge boson masses My, My?
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Unification of Forces

e Coupling strength depends on momentum transfer of virtual gauge bosons
e EM force increases at smaller length scale (o)
e Weak and strong force weaken at higher energy scales (s, «3)

e Quickly review origin of this behavior
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Unification of Forces (see Kane, Quigg, ...)

leoti(p)yuulp — )] [eot(p — ¢)v u(p)]

€)

(p? — M?) [(p—Q)2 —Mﬂ

ege’ / d'p [a(p)yulp — q)l lea(p — @) vu(p))
¢S — a) {(p —q) - M 2}

= eou(K )Y u(k) x [e, — € Tyn(q*)], T = gul(q®) since €,q" =0
e What is I(¢?)? See C. Quigg or favorite QFT book

= equ(k )y 'u(k) x |€, —
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Unification of Forces (see Kane, Quigg, ...)

ay [Fdp®  2ay /1 ¢’z(l — x)
I(¢*) = — — drr(l —z)ln |1 —
(@) 37 Ja2 p? T Jo zz(l —z)ln M?
2 2

q €
for 1 — toff A =
or large A cuto . Qp y=

Oé()1 /\2 Oz()ln—q.
M2’

Q

27

3 nM2_37T

/\/loceoll—
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Unification of Forces (see Kane, Quigg, ...)

e Can keep adding more loops

€0 e,
> > X > —
k k' q k
q + + q +
P p' ! '
> > P )q > P
e, €0

([u(k" )y u(k)] [a(p')yuu(p)))

~el—eqre—e+.]( (P)vuu(p)])
€2 I / e A?
~ ] B < i) where o = S2n T
Mo | | k) u(k)] < (e (o)
i t5p (—4%) |
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Unification of Forces (see Kane, Quigg, ...)

e Include higher order diagrams by replacing “bare” ey with ¢*-dependent coupling :

9 2/ 92 6(2)
60 = € <q ) — A2
1+ 32In =

e So coupling o measured at 1 includes all loops, given by :
Q(

ag 1, A2

a(p?) =

e Use measurement of a(y?) at p? to determine o at any other momentum transfer ¢ :

87y

2
a(q”) = —
1+32n _A—;}
_ ap
1+ 32In 2—;_"—;}
a(p?)

a(p?) 2
e No more dependence on cut-off A or unmeasurable o, just depends on one finite, measured
value a(p?). Also see a(q?) increases as momentum transfer increases
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Unification of Forces (see Kane, Quigg, ...)

e Result above for e* in loops : need to include 1, 7, and quarks

e Should include contributions from all charged particles for which |¢*| >> m?

. 4 1
e Multiply coefficient of correction by : n; + 3 <§> Ny + 3 <§> N4

e 1, is number of leptons, n, is number of quarks with () = 2/3, factor 3 is for three colors
—- Contribution depends on charge? since couple to v on each side of loop
— Each family contributes factor 8/3
= Need to include loops with W= when |¢*| >> M},
= How much stronger is a at ¢* = M5, versus a(4M,)* ~ 1/1377

= Number particles in loops n; = ng = 3, n, = 2 gives factor 20/3
(n, = 2 since Mo, > My, no contribution from top)

a(M? 1
_a<<4 A% S LG
‘ I =35 In {4M€2}
1
= M2 ~ —

= Running of coupling sensitive to particle content
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Unification of Forces (see Kane, Quigg, ...)

e For QCD, similar effects but : no lepton contribution, quark color charges are the same,
gluons self-couple

e For quark loops a(u?)/3m = az(u?)/6m for each flavor
e Gluon loops lead to contribution with opposite sign, larger in magnitude

e Gluon loops lead to anti-screening, weakening with ¢?, asymptotic freedon

a(p’) az(p’) (2 )

= —ng— 11
37 4 Snf

2 043(,“2>
(@) = az(p?) —q?

e Since (33 —nys) = (33 — 2 x 6) > 0, QCD coupling decreases as momentum transfer
increases = asymptotic freedom

o At very large ¢°, a3(g?) independent of as3(u?)

e For small ¢, denominator approach zero as ¢° = Aqcp

o7
A ~ _ ~ 170 MeV
aep “eXp( (33— 2nf>a3<u2>> e

e Using 11 ~ 10 GeV, az(p*) ~ 0.2, ny =5

e Sets the approximate scale for bound states of strongly interacting particles
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Unification of Forces (see Kane, Quigg, ...)

e For weak interaction : exchanged boson is Z, gauge bosons in loops (WW=*, Z, H) dominate
over fermions since weak charge larger

e Running of weak coupling like strong coupling : gets weaker as momentum transfer in-
creases

e Grand Unification : if 3 forces emerge from breaking symmetry of a simpler gauge group -
reunification occurs at some high scale (for instance SU(5) D SU(3).x SU(2), x U(1)y)

e Strong and weak force, non-Abelian gauge groups, decrease in strength; EM has Abelian
group, increases : could unite

e Can write EM and weak couplings reflecting normalization from EW unification :

5] g/2 5CL/QED
o) = — — =
3 4r  3cos? Oy
_ 92 QOQED
Qg = — 9
A7 sin” Oy
2
g = &, SO
41
1 1 b

2
i q
_ n | L] where b, = [—41/10, 19/6, 7
5~ o || whee b = (4110, 1976, 7
(see A.V. Gladyshev and D.I. Kazakov, arXiv:1212.2548 [hep-ph])
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Unification of Forces (see Kane : Modern Elementary Particle Physics)

e |f forces unify, expect : a5 = oq(Mé) = Oéz(Mé) = ozs(Mé)

2 2
12+621n[%§]= 12+bgln[M2G]
as(p?)  dm [ p ag(p?) 4Am | p
1 1 bs — by Mg
= -~ = 2 In—
as(p?)  as(p?) 47T22 H
where b3 — by = 11 — 3 =3 depends on gauge bosons only

1 MG o ( 1 1 )
n— — _
u 11 \aa(p?)  as(p?)

at = My, as(My) ~ 0.034, az(Mz) =~ 0.118, so
In— ~ 35.8 = Mg~ 10"

e Result exponentially sensitive to measurement of couplings,
affected by higher order corrections
1 M}
el € ~ 1030i1.5

e More exact treatment gives Mg =~ 10" GeV, 7, ~ 5 r
az my

years

e Minimal SU(5) ruled out by IMB experiment, 7, > 5.5 X 10°* years for p — e + 7

e See P. Langacker, Phys. Rep. 72, 185 (1981); C. McGrew et al., Phys. Rev. D 59,
052004 (1999).
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Unification of Forces (see Kane : Modern Elementary Particle Physics)

e In SM, strength of EM and weak forces are independent, even though theory “unified”
oy =e/Am, g = e/sinby, g = e/ cosby, sin®by ~ 0.23
e In GUTs, the mixing angle is predicted.
eInSM, Q=T3—-Y//2,in SU(H), expect QQ = T3+ T, ¢ depends on group
e Can write covariant derivative in SU(5) in terms of SU(5) gauge bosons V# and single
coupling gs -
oM —igsT,VI = o' —igs (I3WL + Ty B" + ..), now recall SM relation
Bt = AFcosby + Z" sin Oy,
Wi = —A'sin Oy + Z" cos Oy
= — gsI3sinby + g5T1 cos by = —gssin Oy (T — cot Oy 1)
= e() which is the coupling (charge) to photon A*

e So charge e = g5sin by, ¢ = — cot Oy
e Try to solve for ¢ : Tr(Q?) = Tr(T3+ c11)* = TrTs + Tri?
o But TrTy =TrTi so 1+ c¢* =TrQ*/TrT;
e From 5 multiplet : TrQ*=0+1+3(1/9) =4/3TrT; =1+ 1 +0+0+0=1/2
eSol+c¢*=28/3, and ¢* =5/3
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Unification of Forces (see Kane : Modern Elementary Particle Physics)

e From this we predict :

g% 1 3
5 5 = 5 == 0.375 at unification scale
97 + 95 1+c 8

sin? Oy =

e We can run couplings down to lower scale using a5 = c*avy, ag = o

SiH2 9W = e — 1
ar+ar 1+ o/o
1 :
= T ~ 0.21 at My, big change from 3/8
0.009

e Was strong motivation to pursue these ideas
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Unification of Forces

e Coupling strength depends on momentum transfer of virtual gauge bosons

e Familiar plot shows that in SM the couplings don't “unify”
e See for instance A.V. GLadyshev and D.l. Kazakov, arXiv:1212.2548v1 [hep-ph]

=~ 60

50

40

30

20

10

HHHHWHHHHWHHHHW\HHH\WHHHHW\HH\HWHH

R

SM

Q:
N

o}

e Demonstrates importance of
precision knowledge of couplings
for extrapolation to higher scales

e For couplings to unify, slopes
need to change - need new par-
ticle between 100 GeV scale and
1017 GeV
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Unification of Forces

e For couplings to unify, slopes need to change - need new particle between 100 GeV scale
and 107 GeV : SUSY introduces many new gauge bosons

e Coefficients (slope parameters) b; = [—41/10,19.6,7] — [—33/5,—1, 3]

\am

=3 i e Notice change of slope at thresh-
= 00 P 1/01‘1 """"""""" """"""""""""""""""""""" olds for MSSM particles
50 | f o Mgy A 1034F0:9504 Gay
MGUT ~ 1015:8+0.3£0.1 Ga\/
e Uncertainties from couplings,
30 3 SUSY mass splittings
20 — e SUSY GUTs solve Higgs hierar-
chy problem : ordinarily get con-
10 tributions to Higgs mass of order
My )y
ot

e In SUSY GUTs, superpartners
contribute to My with same
magnitude, opposite sign

(A.V. GLadyshev and D.l. Kazakov, arXiv:1212.2548v1 [hep-ph])
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Proton Decay in SUSY

e SUSY increases Mgy by a rough factor of 10 compared to SU(5), so 7, increases by 104
e SUSY also predicts sin® fyr = 0.233 & 0.003, agrees with measurement 0.23116(12)

e SUSY predicts new decay modes for proton - with Higgsino exchange, particles must be

from different generations - so decay products must be 2nd or 3rd generations (see P. Nath
and P.F. Perez, Phys. Rep. 441, 191 (2007); arXiv:hep-ph/0601023)

e SUSY decay mode : p — v K+

%
u - | - ' > i
I ~ d |~
W "\ H
| |
d - ' > ' g S
Uu
U > U
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Proton Decay : Super-Kamiokande

[T

e 50 ktons water, 22.5 ktons fiducial vol-
ume, in Kamioka, Japan

7.5 x10% p+6x 10% n

e Stainless steel tanks, 39.3 m diameter,
41.4 m tall

e 1000 m rock overburden

Sesnsmemg §

REnRaR | e Inner detector : 20% coverage with 5182
il 20" PMTs

e Detect Cherenkov radiation from decay
products, PID determines if e-like (e
shower, multiple overlapping Cherenkov
rings in diffuse cone) or u-like (well de-
fined circular ring)

Fundamental Symmetries National Nuclear Physics Summer School, Stony Brook University, July 15-26, 2013 D. Kawall, 25



Proton Decay : p — e + 7" Detection in Super-K

gamma

Positron

-

(from Super-K website)
e Good events : fully contained in fiducial volume, 2-3 rings consistent with EM shower
e Reconstructed 7’ mass of 85-185 MeV/c?, no e from y decay
e Total mass range 800-1050 MeV /¢’

e Net momentum < 250 MeV/c (can have momentum from Fermi motion of nucleon in
%0 nucleus, meson-nucleon interactions (elastic scattering, charge exchange, absorption)
: modeled carefully, include nuclear de-excitation with ~

o Efficiency ~ 44%, mainly limited by 7" absorption in **O nucleus
e Background from atmospheric neutrinos : 7, +p — e" + 7 +n

e Invariant mass of backgrounds typically less than for p decay, momentum range larger
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Proton Decay : p — e + 7 Detection in Super-K

p— e*n® MC SK-Il data
o) SK-II (p— e*n?)
~~ - " L
> F Tl L, :
o :_ ."::"!.._.;:ﬁ’ w
S b IR L -
cF .- G e by
S OF ey R ..
= R IR ;
q) - », I.} '..:.,"s..\.:. _“?:-a -.;
E F i e
O .-— '.. '.-;..:
2 : % .f.
© F
©
P -
:lllllllllllllll L - LN | 4 ‘. ...I ll..llllllllllll ||||1
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

Total Invariant Mass (MeV/c?)

e H. Nishino et al., Phys. Rev. D 85, 112001 (2012)
e Set limits on nucleon decay to charged anti-lepton (e
(7% 7=, n, P, p7,w)

e No signals observed, backgrounds typically due to atmospheric neutrino interactions Limits
from 3.6 x 103! to 8.2 x 10 years at 90% C.L. depending on mode

e Exposure 49.2 kiloton-years, for p — et+nY, background 0.114-0.02 events, no candidates,
lifetime 8.2 x 1033 years at 90% C.L.

*or u*) and light mesons
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Proton Decay Limits versus Model Predictions

Soudan Frejus IMB Super-K (2012)

minimal SU(5) [ minimai susyY sus) > '("136963-*(
N N N . Lo RN : : . . Dol . N N . . yr

p—et 0
predictions

~ flipped SU(5), SO(10), 5D SUSY SU(5)_

S UAS

p—etKO
p_>M+KO : : R . : I : : oo : : I
n—vKO ¢ (omusEm—y 4 LBNE34“°”<10W>??
p_>\7K+ A ‘ : : f‘f I : : A : : oo : . . 1oyr)
( classic minimal SUSY SU(5) high scale minimal SUSY SU(5) /
p—>\7K+‘ _SUGRASU(5) S
predictions 5 oL = ' :

| SUSY SU( )wuth additional U( )fla\-/ors-ym-métr-y- - Poioli

various SUSY SO(10) >
I S SUSYSO( 0) with G(224) o
Lo il i i....ul i i||||||| L1 1 1111

32 35
1031 10 10 10 10

(from Ed Kearns, Boston University)

e Minimal SU(5) ruled out from p — ¢* + 7*

o Improving p — e* + KV, p — u* + KV by order of magnitude would have big impact
e Plans to get to beyond 7, > 10% years
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Proton Decay : Prospects

“Hyper-K

/B =5e34 @
17 evts
1 BG

T/B=1e34 @
9 evts
0.3 BG

-

o
W
&)

10 year
sample

points

—

o
W
w

Lifetime Sensitivity (90% CL)
o
w
S

32 LllllllllllllllllllJLlllllllllllllllllllllll

1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

(from Ed Kearns, Boston University)

10

e Achieving another order of magnitude or more in 7 very important
e Super Kamiokande will continue to run with improved analysis, searches in new channels

e Next generation detectors will be necessary
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Proton Decay : Future Approaches

Technique Examples Comments
Water Cherenkov | 22.5 kton Super-K Best for e*nt?
560 kton Hyper-Kamiokande | Good for all modes
Liquid Argon 34 kton LBNE LAr TPC Best for K*v
20 kton LBNO 2-phase TPC Good for many other modes
Scintillator 50 kton LENA Specific to K*v
Next gen. reactor (DB2) ?
Water-based LSc ?

(from Ed Kearns, Boston University)
e Achieving another order of magnitude or more in 7 very important
e Super Kamiokande will continue to run with improved analysis, searches in new channels

e Next generation detectors will be necessary
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Precision Tests of Electroweak Physics

e Electroweak interactions tested extensively, consistency at 0.1% level

e No compelling discrepancies between electroweak observables and Standard Model
o sin? (M) (MS) = 0.231 16(12), known at 5 x 107 level

Ay 0.23071 = 0.00053
AP) 0.23131 + 0.00041
A(SLD) 0.23070 = 0.00026
A —¥—  0.23193 = 0.00029

023 0231 0232
smz()W(MZ)r/|§

= Direct searches for new particles and new physics at LHC complemented by precision

measurements

= Look for deviations from Standard Model predictions at lower center of mass energies,
through radiative corrections

= Compelling theoretical arguments for new physics at TeV scale
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MOLLER Experiment at JLab : Precision Test of Electroweak Physics

e Proposes a measurement of parity-violating asymmetry Apy in longitudinally polarized e~
off unpolarized e~

OR — 0L
op+ oL
e oy (o) is scattering cross-section for incident right (left) handed electrons

APV —

e Apy # 0 violates parity

e At Q* << M3 parity nonconservation comes from interference between EM and weak
amplitudes

!
e —P1 PiL_—¢ P , e e e e
P1
Y Y Z Z
e ——€ € P2 e e € e
P2 P2 P2
e The unpolarized cross-section is dominated by photon exchange, given by :

do o (3+00829)2 o 1+yt+(1-y)!
dQ ~ 2m,E  sin*# dm B 21 —y)?
e « is fine structure constant, F incident beam energy, 0 scattering angle, y =1 — E'/F,
E’ energy of scattered e
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MOLLER Experiment at JLab : Precision Test of Electroweak Physics
e —P1 P e e —2F! , e e e e
P1
Y Y Z Z
e —€ € P2 e e € e
P2 P2 P2

e Apy due to interference between photon and Z¥ exchange diagrams

e Remember - e coupling to Z" is different for left and right-handed e
e See E. Derman and W.J. Marciano, Annals Phys. 121, 147 (1979)

Gr  4sin*d O, E Gr 2y(1 — y)
V2ra(3+cos6)? 0 ral+yt+ (1 —y)

e Q% proportional to product of electron vector and axial-vector coupling to 7’

Apv — meE

1Qw

e ()}, weak charge of the electron
o At leading order Q% = 1 — 4sin” fy; modified at 1-loop and beyond — 1 —4sin” Oy (Q?)
o At Mz, sin® Oy (M) =~ 0.23116(12), Q% ~ 0.075

= At Q% ~ 0.0056 GeV? of MOLLER experiment, sin? 6@y ~ 3% larger
Q%V ~ 0.0469 =+ 0.0006, change of 40% compared to tree level value at M !

e \Very sensitive to running of sin? Oy
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MOLLER Experiment at JLab : Precision Test of Electroweak Physics

e Apy ~ 35 ppb, goal of MOLLER is measurement with statistical precision 0.73 ppb, 2.3%
measurement of Q)f;, (Spokesperson Krishna Kumar, thanks for material)

e Determines d(sin” @) 2 0.00029 (0.1%); comparable to single best measurements from
LEP and SLC

e Would use 11 GeV polarized e~ beam in Hall A

e What is physics motivation for a precision measurement of sin® @y;?

e Electroweak theory provides precise predictions with negligible uncertainty - corrections at
1-loop level all known

e Comparison with precise experimental result (= 107 - G) sensitive to new physics at
TeV scale

e Uniquely sensitive to purely leptonic amplitudes at Q% << M3

KA R o

e See A. Czarnecki and W. J. Marciano, Int. J. Mod. Phys. A 15, 2365 (2000) [arXiv:hep-
ph/0003049]

Fundamental Symmetries National Nuclear Physics Summer School, Stony Brook University, July 15-26, 2013 D. Kawall, 34



MOLLER Experiment : Sensitivity to Contact Interactions

e Express amplitudes of new high energy dynamics as contact interaction between leptons :

2
Loey = ) %emeieﬂ” €;- (1)
i,j=L,R
®er/R= %(1 F v5)Y. chiral projections of electron spinor, A mass scale of new interaction,
gij = g;; are new couplings, grr = grR
e For 0.023 measurement of (Jf;,, sensitivity to new interactions (like lepton compositeness):
A 1 246 GeV

VIghe = 92l \/\/iGFmQ%/\ V/0.023Q5,

e For \/’912-21-2 — g7,| = 2w, A = 47 TeV, electron structure probed at 4 x 107%! m

= 7.5 TeV (2)

e Best contact interaction limits on leptons from LEP, on quarks from Tevatron and LHC .

e But LEP only sensitive to g%; and g% + g% - insensitive to PV combination ¢%, — g7,

e New Z' bosons, like Z, from SO(10), predict PV couplings

4rov
9 2 | - N
\/‘gRR - gLL‘ = \/3 cos2 Ory ~ 0.2 = Zx ~ 1.5 TeV

e Get sensitivity up to Z;r =~ 1.8 TeV from left-right symmetric models
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MOLLER Experiment and Supersymmetry

e New particles in Minimal Supersymmetric Standard Model (MSSM) enter Apy through radiative loops

o Effects from MSSM as large as +8% on ()§;;, can be measured to significance of 3.5 ¢

e If R-parity violated, Q)5 can shift by -18%, an 8 o effect

e MOLLER can help distinguish between R-parity conserving and violating SUSY; RPC lightest SUSY particle

could be dark matter candidate (plot below from DOE proposal)

0.157 1

~0.1} ]

0.05 0.1

-0.2 -0.15 -0.1

e=005 0
O (Qsusy/(Qwsu

Figure 3: Relative shifts in the electron and proton weak charges due to SUSY effects. Dots indicate the
range of allowed MSSM-loop corrections. The interior of the truncated elliptical regions give possible shifts
due to R-parity violating (RPV) SUSY interactions, where (a) and (b) correspond to different assumptions
on limits derived from first row CKM unitarity constraints.
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MOLLER : Measurement of sin® 0y

0-25 ||I'| 1 ||||||I'| 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII I IIIIII|'| LY ABLILL
— SM

¢ current
0.246 | e proposed

0.248

0.244
0.242

0.24 Q, (APV) I Qe
o_ 0.238

0y (1)

sin

0.236
0.234 T MOLLER
0.232 { Qweak
0.23 { eDIS
0.228 1 IIIIII|.| L1 IIIII|] L1 IIIII|] 1 IIIIIIII L1 IIIIIII 1 IIIIIIII 1 IIIIII|.| L1 1111

0.0001 0.001  0.01 0.1 1 10 100 1000 10000
u[GeV]

Tevatron

SLC

e Plot from DOE proposal, shows 3 planned measurements with projected sensitivity, arbi-
trary central values

e Notice : some tension between left-right asymmetry in Z production at SLC Ay r(had) vs
forward backward asymmetry in Z decays to b-quarks App(b) at LEP

e MOLLER will achieve similar 0.1% accuracy, potentially influence world average
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MOLLER Experiment Design (K. Kumar)
Parameter | Value |
E [GeV] ~11.0
E’ [GeV] 1.8-8.8
Ocm 46°-127°
Orap 0.23°-1.1°
< Q% > [GeV?] 0.0056
Maximum Current [pA] 85
Target Length (cm) 150
Pigt [g/cm3] (T=20K, P = 35 psia) 0.0715
Max. Luminosity [cm~2 sec™!] 3.4-10%9
o [uBarn] ~ 40
Mgller Rate [GHz] ~ 135
Statistical Width(2 kHz flip) [ppm/pair] ~ 83
Target Raster Size [mm] 5x5
Apyv = 35.6 ppb AArqy [ppb] ~ 0.6
Luminosity: 3x103° Background Fraction ~ 0.08
Pyeam ~ 85%
7 pas < Apy > [ppb] ~ 35
3(Arv) = 0.73 Aot < Avapt > 21%
5(0Q°w) = + 8(sin? Oy stat 0.00026
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MOLLER : Technical Challenges (K. Kumar)

 MOLLER Collaboration

Technical Challenges - ~ 100 authors, ~ 30 institutions
- Expertise from SAMPLE A4, HAPPEX, GO,
* = 150 6Hz scattered electron rate PREX, Qweak, E158
- Design o flip Pockels cell ~ 2 kHz - 4th generation JLab parity experiment

- 80 ppm pulse-to-pulse statistical fluctuations
* 1 nm control of beam centroid on target

- Improved methods of “slow helicity reversal®
* > 10 gm/cm? liquid hydrogen target

- 15m ~5 kW @ 85 pA
* Full Azimuthal acceptance with 6, ~ 9 mrad

- novel two-toroid spectrometer

- radiation hard, highly segmented integrating
detectors

* Robust and Redundant 0.4% beam polarimetry
- Pursue both Compton and Atomic Hydrogen

* 20M$ proposal to DoE NP
techniques * 3-4 years construction
® 2-3 years running

e First data ~ 2017
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