Independent Particle Model:

1 particle (or hole)
outside closed shell

(very few nuclei)

--------------------------------------------------------------------------------------------------- "
- .

=P ulti-particle systems

Recall mean field approximation

H = Hipm + HRresidual

Effects not included in independent
particle model potential




Residual Interactions

Need to consider a more complete Hamiltonian:

H=H,+H

residual

H  reflects interactions not in the single particle potential.

residua

NOT a minor perturbation. In fact, these residual interactions
determine almost everything we know about most nuclei.

Start with 2- particle system, that is, a nucleus “doubly magic + 2”.
I-Iresidual is H12(r12)

Consider two identical valence nucleons with j, and j,.

Two questions: What total angular momenta j, + j,=J can be formed?
What are the energies of states with these J values?



Coupling of two angular momenta

M

J1t )2 All values from: j,—j, to j;+), (J1F])
Example: j;,=3,),=5: J=2,3,4,5,6,7,38

BUT: Forj,=j, J=0,2,4,6,..(2j—=1) (Why these?)



How can we know which total J values are obtained for the
coupling of two identical nucleons in the same orbit with
total angular momentum j? Several methods: easiest is

the “m-scheme”. ‘
‘Table 5.1 m scheme for the configuration |(7/2)*J)*
J1=1/2 J2=172
mi my M J
772 52 6 |
112 812 5
T2 12 4
T2 -1/2 3 6
7/2 -3/2 2
T2 -5/2 1
T2 =712 0|
52 32 4]
S5I2 172 3
512 -1/2 2 4
5/2 -3/2 1
512 -5/2 0 _
3/2 1/2 9]
372 -1/2 1 2
312 -3/2 0 |
1/2 -1/2 0] 0

* Only positive total M values are shown. The table is symmetric for M < 0.
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Consider 2 particles, in orbits j1, j» coupled to
spin Ji, and interacting with a residual
interaction, V.

2 ldentical Nucleons

| Juja J > | Juja >
W
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NO RESIDUAL
INTERACTION



Typical spectra of nuclei with 2 “valence” particles outside
doubly magic core. Universal result: Ground state always 0*

2 VALENCE NUCLEONS
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Why? Can we obtain such simple results by considering
residual interactions?



What are Energies of 2-particle configurations
AE (ji1j2d) = (kkIM[H.|jLIM )

1 s :
m <J1J2J||H12||J112J>

Separate radial and angular coordinates

W=7 Ry (r)Ym® 0

d’R, l(l-*; 1) R + 2m

w LZE-VWR =0
where — > " h?("’ VIR,

R, depends on potential — but generally not very
much.

Many choices possible. Let's start with simplest.

Nuclear force is short range and attractive. So, take
o-force



Vv =_—V°5(i;r2 )5 (cos O, cos O,)5( D, D,)

5 2] A
i

in spherical coordinates

Need to evaluate the matrix element (ME) of the form

Vv

Oy

Vv

So,d

<\P“‘§" Y, (cb,cb)>

LP> B <_}.—Rnl

an! > % <Ylm (CD,CD)

r

First factor is just a | constant | independent of J,

j.e., does not depend on Jin |jj,J).

So energy shifts for different J's are independent

of the form of the radial wave functions and

hence of the radial form of the potential 1]

= Great simplification

= Typical of many results - radial effects disappear



How can we understand the energy patterns
that we have seen for two — particle spectra
with residual interactions? Easy - involves
a very beautiful application of the Pauli
Principle.

Need 2 ideas only

» Nuclear force (including residual
iINnteractions) is

- Short range and attractive

- Pauli Principle



Physical Interpretation

frn I J depends on angle
4 between the two

ds); H orbital planes

Interaction strongest when the 2 particles are closest to
each other

i.e., when the orbits are co-planar

= strongest interaction either for

J min or J max

Which one?

Consider L, S composition of state J

L=1+ 1, S==4+==1o0r0

N
N



lfiiﬁﬁiiiﬁiiﬁﬂiiii;iEEEHBBESEBEEEH
Ll
Ll

:  Pauli Principle

Fermions:
No two fermions can occupy the same state/place

Wave functions must be totally antisymmetric

W (F)==Y(-F}] r=%F-F

.". If particles are at same place ----- F o= Q--me-
then ¥ (0) = -¥ (0)
=¥ [0) =0

so PP is satisfied

We split wave functions into 2 parts - spatial part (L),
and spin part (S). PP =

TTot = \I‘spat& Tspin = Anti-Sym




This is the most
important slide:
understand this and
all the key ideas
about residual
interactions will be

PP: Key Physics ldeas

‘Pspatial \Pspin
A S
S A
O

S=¥2+%=1=S8Sym
S=%- %=0=A-Sym
LI,spat (A) x lIJspin (S =1) Tspat (S) x \Pspin (§=0)

S =1 case Wepat = A Y (r12) = -¥ (- r12)

For |o force |, which only acts at 71, =0

lP(l‘12=0)=0.’!

So, at the ONLY place where a é-int acts, the wave fct.
vanishes—i/.e., No effect of ¢ fctinton S=1 states / / !/

S =0 case Wepat = S

No restriction on ¥ (>, = 0), hence J-int
can have big effect / / /



Equivalent Orbits

Ji=de 1J,9)
210, 2, B, cormseensnersrense 21
e.g. 19:.Y) J=0,2 468
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Geometrical Interpretation

for ‘j2J=O> being lowest

i —e—
A A A
A X A
|
Y
$:0 S

IDENTICAL NUCLEONS
EQUIVALENT ORBITS

Pauli Principle is ~ repulsive interaction !






dlnteraction  Analytic formulas

v
V12 (8) =-Vod (r1-r2) = r_°r §(r,—r)0 (cosb, —cosh,) s (@ -0,)

AE(hfz])t— Vofn(m h nzh)A (]1]2])

where : 5
Fa(n111n212)=-41;‘[-12-R mb (MR ‘mn (r)dr
r
and ,
R T . j1rjiaJ T T .
A(Jml)-(2n+1)(2;z+1) L ig (if ) +12-Jseven)
172
=0 (if h +12-Js0dd)
(Non-equivalent orbits)
AE("z’)“ VoFr(nl)A(77)  (even)
where
=L | LR*
Fa(nl) “LZR w (r)dr
and

e1\87 ; 2
A(j’J):fz’_;ll[ j JJ Ueven)

]~
:-30

(Equivalent orbits)



MULTIPLET SPLITTINGS; 6 INTERACTION (ldentical Particles)
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EQUIVALENT ORBITS

NOTE: R,,,< 2.0

Simple treatment of residual interactions accounts for
=

universal fact that even-even nuclei have 0 ground
states.

e
Note that the 0 level is lowered more for higher j orbits



Lowering of 0+ States

. 2j+12
AE(]QJ)oc—VO(—Z)—

i
1 Lh
2 2

Ford = 0

AE(J =0 -V, ZH)

—> AE o« 2j+ 1

Energy lowering of 0°

is larger for larger |
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N
+
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Why ?




Lowering of 0™ States in | >/ )

AEx2j+ 1. Why?

Note: 2 j + 1 = # magnetic substates

low j high j
. Semi-
+J +J classical
) picture-
-] localized

-]

Y (J, m ©)is localized to an angular range*
centered about normal to ang. mom. vector:

spread of ¥ roughly given by angular “distance” to
next substate

*quantum fluctuations

. «» Larger; = more magnetic substates
= greater localization

= gQreater spatial overlap in
| im)and | j-m)

— lower energy



Consider now an extension of, say, the Ca nuclei to 43Ca, with three
particles in a j= 7/2 orbit outside a closed shell?

How do the three particle angular momenta, j, couple to give final
total J values?

If we use the m-scheme for three particles in a 7/2 orbit the
allowed J values are 15/2, 11/2,9/2,7/2,5/2, 3/2.

For the case of J = 7/2, two of the particles must have their angular
momenta coupled to J = 0, giving a total J = 7/2 for all three
particles.

For the ) =15/2,11/2,9/2,5/2, and 3/2, there are no pairs of
particles coupled to J = 0.

Since a J = 0 pair is the lowest configuration for two particles in the
same orbit, that case, namely total J = 7/2, must lie lowest !!



43Ca

Treat as 20 protons and 20
neutrons forming a doubly
magic core with angular
momentum J = 0. The lowest
energy for the 3-particle
configuration is therefore

J=7/2.

Note that the key to this is the

results we have discussed
the 2-particle system !!

A
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GROUND STATE J™ VALUES OF
SOME ODD MASS NUCLE!
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BUt’ these were The Need for Simplification in

simple cases. As the Multiparticle Spectra
number of valence Example: How many 2+ statese
nucleons grows, the 7 et
2z 2 1
num_ber Of WayS Of 4 ds;y &y 27 |d§/2J=2,g§,2J=o>, | d2,7=0.g7,7=2)
making states of a 2,0 4.82,7-20-2),
given J grows hugely. | 52T =287, 7 =47 =2).

| d2y ) =485, =6.=2),

| ds;y 87/ =Lds)y 87,0 =1J =2 >,

Those “basis states” |2 g =4 g3, =4 =2)

will mix. How many 54qm.
states do we need to cl.sh. 50 82 12 val. 7 in 50 - 82

mix? What are the N,=12 N,=10 10 val. vin 82— 126

1 ? 82 126 How many 2+ states subject
I'eSIliI"II ngd_Sfth:u C:::l res : o — e o Pau//)/;r/ncip/e limits?
ow difficult a o2 porz

calculation is this? o e 3x 1014111

Consider a couple of
. T v 154Sm 2+ states within the

simple cases and a valence shell space

more typical one.



So, with even just a few valence nucleons, such calculations
become intractable by simple diagonalization. But yet, nuclei
show very simple patterns despite the complexity and chaotic
behavior one might expect. Emergence of

¢’ .69 pe ¢
q° 58 2°
r 1.28 2%/ N\_

‘0

{ AV
0%
20

& =N

134
Teg, 130 ] 120
#® s21t7e s2'%%s

How can we understand emergent collectivity?



Two approaches

a) Advanced methods at the level of nucleons and their
interactions — See Vary lectures next week

b) Collective models that look at the many-body
system as a whole, with its shapes, oscillations,
quantum numbers, selection rules, etc.

We will follow this route but then return to ask what the
microscopic drivers of structural evolution and
emergent collectivity are.



The key concept for Collectivity — Coherent motion
of many nucleons. Lowering of collective states
Lowering of one state.

Note that the components

e ) of its wave function are all

LEVELS, ALL V equal and in phase
EQUAL

+\V

\

Please think about this
carefully — it is one of

-(N=1V
the most important
y concepts in all of many-
‘VLOWEST-j.\-.[¢l+¢2+"'+¢.\’] body physics

Consequences of this: Lower energies for collective states,
and enhanced transition rates.



First consider nucleil with a moderate number of
valence nucleons (~ 6-16).

These nuclei retain the spherical shapes of nuclei near
closed shells but are “soft” -- they can take on oscillatory
vibrational motion. The lowest lying such excitation is a
small amplitude surface quadrupole oscillation with angular
momentum 2

2" =————— J=2o0ne “phonon” vibrational excitation

0+ ————



More than one phonon? What angular momenta? M-scheme for phonons

Table 6.1 m scheme for two-quadrupole phonon states™

J1 =2 Jr =12

m mo M => m, J
P 2 4 7

2 1 3

2 0 2 4
2 —1 ]

2 2 0 |

1 | 2 ]

1 0 1 2
1 . 0 |

0 0 0 ] 0

*Only positive total M values are shown: the table is symmetric for M < 0. The full set of allowable m; values

giving M > 0 is obtained by the conditions m| > 0,m>r» <mjy.



Types of collective structures
Few valence nucleons of each

type:

The spherical vibrator

Vibrator (H.O.)
E(J) =n (% wy)

R,,=2.0

Gamma-ray transitions:

Selection rule: Can destroy

only one phonon

Energy (keV)
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Deformed Nuclel

What is different about non-spherical nuclei?
They can ROTATE !!!

They can also VIBRATE

— For axially symmetric deformed nuclei there are two
low lying vibrational modes called  and y

S0, levels of deformed nuclei consist of the
ground state, and vibrational states, with
rotational sequences of states (rotational bands)
built on top of them.



Rotational states built on

superposed on)

E, (keV (. :

x ) vibrational modes

1500 4+ 2219 2220
+
6 498.3 516.6 2: 66.6 66.6
5% 3552 3444 O e 0
4+ 198.0 200.9 K=0E-Epr By

| 8t 1024.5 1096.8 | ' 2 2'.@

1000 3: 86.1 86.1 e/

2 0 0

2y Vibrational
6" 614.4 . 2 - itati
639.8 h /2' excitations

500(

4+ 299.5 304.7 164,

2+ 914 914
ob OF 0 0

gsb E, Epg Rotational Rotor
h2 /2l @ states
E) « (°/21)I(I+1)

Ground or
equilibrium

state R»=3.33




Transition rates (half lives of excited levels) also tell us a
lot about structure

2+
BE2: 0= 2 (2u B2 )j0 [
) R A
= " 7
300+ ’
I N=126 ¢
) N=82 / ]
P \ «—{—= Collective
= L N=28N=50 J 1
~Z  } N=20¥ T
S Ins N 3
e 100—+ i i
- J
| N
! | P *
Ol‘.h.%xu;fé' ey " 1S \. 1
) 50 100

Magic

Neutron Number N



Coherence and Transition Rates ‘

Consider simple case of N degenerate levels: 2*

— 1 AE=(N-1)V
— WY =aop +apy+----aopy
> 1
where a = Jjy
R :
W l / | =2 ==
[= /
04-
Consider transition rate from 27 — 07 The more
- configurations
B(EZ2; 2,*_>o,°)-2J1 I<o,’|r52||2,'§ that mix, the
| B / ~ oy
_— . g ¥ . stronger the B
(071E2027 ) = (0il€2| ¥ ) = aZ (07]€2]e ) (E2)value and
the lower the
[ = \ 7
Assume all {0, [E2]e, ) matrix elements equal. energy of the
<.01."E2"21. . <OIIE2I-‘°: >= - collective state.
‘ / Fundamental
4 property of

’ e i
Sk m collective states.

Transition rate enhanced by factor of N

Enhanced transition rates are a signature of collectivity,
alona with low 27 eneraies | ower E(27) higher B(E?2) —



An algebraic approach
Collective behavior superposed on shell structure
IBA, a symmetry-based model (Iachello and Arima)

Drastic simplification of shell model

* Valence nucleons, in pairs as bosons

e Only certain configurations. Only pairs of
nucleons coupled to angular momentum
O(s) and 2(d). Why?

* Simple Hamiltonian in terms of s an d boson
creation, destruction operators - simple
interactions

 Group theoretical underpinning

« Why? Because it works. And extremely
parameter-efficient




Shell Model Configurations

Fermion
configurations

Roughly, gazillions !!
Need to simplify

The IBA

Boson

configurations
(by considering only
configurations of
pairs of fermions
withJ=0o0r2.)



Modeling a Nucleus

Why the IBA is the best thing since baseball, a jacket potato,
aceto balsamico, Mt. Blanc, raclette, pfannekuchen, baklava, ....

154Sm ==» Shell model == 3 x 104 2% states

Is it conceivable that
these 26 basis states
are correctly chosen to
account for the
properties of the low
lying collective states?

Need to truncate

IBA assumptions

1. Only valence nucleons

2. Fermions — bosons \ \

J=0 (s bosons) IBA: 26 2* states
J =2 (d bosons)

IBA: Truncation of Shell Model with Group Theory structure



IBA has a deep relation to Group theory

That relation is based on the operators that create, destroy s and d bosons
S, S, d’L, d operators Ng =n,+n, =s*s =d*d
Ang. Mom. 2 7 = 1 -
ng. Mom d',,d, u=2,1,0,-1,-2
Hamiltonian is written in terms of s, d operators
- te of te At
H=H, +H,; + H, ,(s's, s'd, d’s, d"d)

Since boson number, Ng, is conserved for a given nucleus, H can only contain
“bilinear” terms: 36 of them.

Gr. Theor. Group is
classification called

s’Ls, s’Ld, d’Ls, dd —> of U (6)

Hamiltonian

U(6) has three subgroups corresponding to different shapes



Concepts of group theory 9

First, some fancy words with simple meanings: Generators, Casimirs,
Representations, conserved quantum numbers, degeneracy splitting

Generators of a group: Set of operators, O,that close on commutation.

[0,,0,1=0,0;- 0,0, =0, ie., their commutator gives back 0 or a member of the set
For IBA, the 36 operators SfS, de, Sfd, dfd are generators of the group U(6).

ex: [d*s,s*s]‘ndns>=(d*ss*s—s*sd*s)‘ndnJ
=d'sn |nn.)-s'sd's|nn)
=(n,-s's)d"s|nn,)
=(nS—STS)W\/a‘nd+l,ns—l>
=W\/Z[ns—(ns—l)]‘ndﬂ,ns—w
= Jn +1n, |n, +1n, -1)

=d's|nn,)

or: [dTS,STS]= d’s




Concepts of group theory 9
First, some fancy words with simple meanings: Generators, Casimirs,
Representations, conserved quantum numbers, degeneracy splitting

Generators of a group: Set of operators, O,that close on commutation.

[0,,0,1=0,0;- 0,0, =0, ie., their commutator gives back 0 or a member of the set

For IBA, the 36 operators SfS, de, Sfd, dfd are generators of the group U(6).

Generators: define and conserve some quantum number.

Ex.: 36 Ops of IBA all conserve total boson number N =gs'g + d?ﬁ =n + n J

Casimir: Operator that commutes with all the generators of a group. Therefore, its
eigenstates have a specific value of the q.# of that group. The energies are defined
solely in terms of that g. #. N 1s Casimir of U(6).

Representations of a group: The set of degenerate states with that value of the q. #.

A Hamiltonian written solely in terms of Casimirs can be solved analytically



Sub-groups: ‘

Subsets of generators that commute among themselves.

e.g: d'd 25 generators—span U(5)
They conserve n_ (# d bosons)

Set of states with same n are the representations of the group [ U(5)]

Summary to here:

4 Generators: commute, define a q. #, conserve that g. #

Casimir Ops: commute with a set of generators
< .. Conserve that quantum #

.. A Hamiltonian that can be written in terms of Casimir Operators is then
diagonal for states with that quantum #

Eigenvalues can then be written ANALYTICALLY as a function of that
quantum #




Group Structure of the IBA

<0 H(s)
* % vibrator
6-Dim. problem U6) —
SU(3)
rotor
| O(6)
Magical group y-soft

theory stuff

happens here Three Dynamic symmetries,

nuclear shapes




Group Structure of the IBA

U(5)
vibrator
6-Dim. problem U(6) T
E SU(3)
Rotor
O(6)
O(6) y-soft Magical group y-soft

theory stuff
happens here

Ryp=2.5

Three Dynamic symmetries,
nuclear shapes

Svymmetry Triangle of the IBA

U(5) SU(3)

vibrator



Let’s illustrate group chains and degeneracy-breaking.

Consider a Hamiltonian that is a function ONLY of: s's +d’d

Note thats’s =n_and d’d =n and that n_ + n, = N = % val nucleons

Thatiss H=a(s’'s+d’d) =a(n, + n;)= aN

H “counts” the numbers of bosons and multiplies by a boson energy, a. The energies
depend ONLY on total number of bosons -- the total number of valence nucleons.
The states with given N are degenerate and constitute a “representation” of the
group U(6) with the quantum number N. U(6) has OTHER representations,
corresponding to OTHER values of N, but THOSE states are in DIFFERENT NUCLEI.

Of course, a nucleus with all levels degenerate is not realistic (!!!) and suggests that
we should add more terms to the Hamiltonian. | use this example to illustrate the
idea of successive steps of degeneracy breaking related to different groups and the
quantum numbers they conserve.



H'=H+bd'd=aN+bn,
Now, add a term to this Hamiltonian:

Now the energies depend not only on N but also on
ngy

States of a given n, are now degenerate. They are
“representations” of the group U(5). States with
different n  are not degenerate



u(6)

H = aN

H=aN+bd'd =aN+bn,

u(e) U(5)
2b 2 ""23
,
b 1 %,
Y
0 0 {Q/v
n, K
U(3)
b d'd



Example of a nuclear dynamical symmetry -- 0(6)

Spectrum generating algebra

c=N-4
C— - - - - - — — — — — — —m—————— — — FAMILY OF
// c=N-4 LEVELS

G=N_2
_ OIS — — — — — — — — — — — — — — — — — FAMILY OF
c=N-2 LEVELS
6t
-~ +
====- g"'
e T=3 ~ ot
\ // 4+
\ \’___,, —> ==Z_"C ot
=N \\\\\_—_ _____ 2+
S T =1
N —— 0+
T =
O(6) o O(5) > 0O(3) I
Ac(oc+4) + Bt(t+3) - CJ(J+1)I

Each successive term:

* Introduces a new
sub-group

* A new quantum
number to label the
states described by
that group

* Adds an eigenvalue
term that is a function
of the new quantum
number, and
therefore

* Breaks a previous
degeneracy



Classifying Structure -- The Symmetry Triangle

sagre=y MEFL LD

=2
u(s)
Vibrator

Deformed




What do you do with all the nuclei that do not manifest a
symmetry ? Need a Hamiltonian that breaks the symmetries.

Truncated form of with just two parameters (+ scale):

K/e

Q=¢[s'd +dfs +y (dfd )?]

Competition: €N, Counts quad bosons: vibrator.
KQ-Q Gives deformed nuclei.
' Determines axial asymmetry

Hence structure is given by two parameters, €/ K and 7y

More complicated forms exist but this is the form usually
used. It works extremely well in most cases.






H has two parameters. A given observable can only specify one of them. That is,
a given observable has a contour (locus) of constant values within the triangle

o o~

uis)
Vibrator Prol

R4/2 |= 2.9




Mapping Structure with Simple Observables — Technique of
Orthogonal Crossing Contours

JA\
E(4)) E(05)-E(22)
E(2}) E2")




Mapping Structure with Simple Observables — Technique of
Orthogonal Crossing Contours

Y - soft

Vibrator Rotor
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R. Burcu Cakirli et al.
Beta decay exp. + IBA calcs.



EXCITATION ENERGY (MeV)
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Warner, Borner, and Davidson
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Complementarity of macroscopic and microscopic approaches. Why do certain
nuclei exhibit specific symmetries? Why these evolutionary trajectories?

What will happen far from stability in regions of proton-neutron
asymmetry and/or weak binding?




