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Mankind always fascinated by concept of symmetry

Pythagorans considered circle (sphere) to be most
perfect two-dimensional (three-dimensional) objects
because of symmetry

Stars were fixed in the heavenly spheres and planets
moved in perfect circles

However, outer planets (Mars, Jupiter, Saturn) double
back on themselves in path across the sky

Fixed by idea of epicycles (circles on circles)






Even Kepler used idea of symmetry in trying to
understand planetary motion
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Only with Newton, who pointed out it is laws of physics
NOT orbits which are symmetry, did progress begin to
be made in physics

What is symmetry?
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Translational Symmetry



Rotational Symmetry



Hexagonal Symmetry



Symmetry and Symmetry Breaking

What is symmetry? Weyl's answer:

"Something is symmetric when it looks the same

before and after you do something to it"

Importance to physics: Noether's theorem

Noether: Symmetry implies conservation law

'The mathematician Emmy Néther was born in 1882 and did much of her work in
(Gottingen, where the great mathematicians Hilbert and Klein and the physicists Heisen-
berg and Schrédinger were professors. Fleeing the rise of Naziism, she spent her last years

in the United States at Bryn Mawr and at the Institute for Advanced Study in Princeton.
She died in 1935.



Examples:

a) L invariant under translation — momentum conservation
b) L invariant under time translation — energy conservation

c) L invariant under rotation — angular momentum conservation

These are ONLY exact symmetries—all others are
broken!



Classical Physics: Hamilton’s Equations

dp; OH
it~ OF
dr; OH
dt  Op;

Spatial Translation — Momentum Conservation

- T (:')Ij" . d T
SH = § - R S N
— Or; di ;P

Since § 1s arbitrary, we find

mn
E p; = const.
i=1



Time Translation —Energy Conservation

dH " [di, 0H dp. 0H] 0H

E_gdt'aﬂ dt  op, | ot
ii)ﬂ OH OH 0H
B op; or;  or; Op;

i—1

0

That 1s, invariance under time translation implies that H=const. conservtion
of energy.

Rotation Angular Momentum Conservation

Instead of Cartesian co-ordinates r; and momentum p;, we use as generalized
co-ordinates the angles 8, ¢. The corresponding conjugate momenta are the
angular momenta ;. Now suppose that we change the orientation of our
apparatus by rotating the entire system in space through angle ¢g. If the
Hamiltonian is invariant under this change (as we would certainly expect
since there is no magic direction in space) then



Since ¢q 18 arbitrary, we find that

T

Z(Li)z — const.

i—1

and similarly, we can show that all three components of the angular momen-
tum are conserved. That is, invariance under spatial rotation imples that
angular momentum is conserved.



Invariance and Quantum Mechanics

Observable ¢ corresponds to hermitian operator Q

g =< ﬂ|@|?j > = /‘dg'?"'?l,-ﬂ-‘* ('ﬁ”@'@i’(ﬁ t)

dg _ 3, oy oy L al® A
it .[d r(i}t QU YRy,
= i [d'r (@ HQU — v QHY)
— i [d'r(H,Qlu

n order that dg/dt = 0 for arbitrary wavefunction?r we demand that
I der that dq/dt =0 £ bitrary t t / d d that

(H,Q] =0



Classical Physics: Kepler Problem

If no use of symmetry have two coupled second order
differential equations:

&*r  GMT

ez~ o3

with initial conditions
-F'(O] = Rpé., -E’(O) = Vheéy

Equivalent to four coupled first order equations.



Solve via iteration (6 = T/Npaz, 1 = 1,2, .. Nppaz)
zn] =xn—1] +exvn — 1]

yln] =yln — 1] + exvyn — 1]
ve[n] = vo[n—1]—exGxMxx[n—1]/(x[n—1]*+y[n—1]?)
vyn] = -Uy[n—l]—E*G»{:Mr*y[n—l]/(m[-n—1]2+y[n— 1]2)

with initial conditions

7

z|0] = Rp; y[0] = 0; v,[0] = 0; v, [0] = Vo

Generates ellipse with sun at a focus.



Angular Momentum

Now use symmetry—rfor central force di/dt — 0. Then

L? dr_, L2 Gm

E = ? -
Qm?‘4(dqﬁ) + 2mr?  r?
with ”
I, = 2
mrt—,

Solve directly with substitution u = 1/r

5 / du’
— (o =
v uo \/EJrﬂfmCu——u?
yields
L? u
— COS d) d)U) _  GMm?




or

(1 + ecos(d— ¢g))

1 GMm?
r L2

with eccentricity € given by

e ==
m3G?M?>

Note that orbit is ellipse with sun at a focus. Also, NO
precession of orbit. For Mercury observed precession is

Abops = 5600.73 + 0.41” /century

Influence of other planets (primarily Earth, Venus,
Jupiter)

Apianets = HHH7.62 £ 0.20” /century



Discrepancy is
Abops — Adplanets = 43.037 [century

and is due to general relativistic modification of
Newtonian potential.



Runge-Lenz Vector

Use Runge-Lenz vector (first found by Laplace)

> - GM
A=ix - —LF
”
Can show that ~
dA
g
dt

—

Note that at perihelion or aphelion v 1 7 so A is
along this direction. But Ais independent of time so
direction of perihelion or aphelion never changes—no
precession!



For orbit evaluate scalar product

- 1 -
A= —L°—GMmr

T

o) B
172
—L

" GMm + Acosé
so find ellipse with eccentricity e = A/GMm.

Note solution is algebraic—no differential equations
to solve!l Use of symmetry allows trivial solution.



HOW is symmetry broken?

Only three symmetry-breaking mechanisms in all of
physics :

1) explicit symmetry breaking
i) spontaneous symmetry breaking

iii) quantum mechanical symmetry breaking

We give examples of each!



i) Explicit Symmetry Breaking

Consider harmonic oscillator:

_1..:2_ 1. 2 2
L = smz® — smuwge

Invariant under spatial inversion:

Vo(w) = —3muwaz’® = —gmw?(—2)? = Vo(-2)

Equilibrium configuration (ground state) determined

Via



oV (z)
Ox

1.€.,

T=T

rp =



consistent with symmetry!

Now break symmetry via constant force

Equilibrium now at zp = —25 # 0!

2
mwy

Consistent with fact that symmetry is broken
explicity—

L(x) # L(—x)

This is explicit symmetry breaking!




ii) Spontaneous Symmetry Breaking

Consider (frictionless) bead on hoop rotating in the
earth's gravitational field about vertical
axis—Lagrangian is

L= %m(RZQQ + w?R?sin? 6) + mgR cos )

Note symmetry condition
L(0) = L(-0)

Now find ground state:

a6

9L — 1nw? R? sin O(cos @ — —=) =0




Two possibilities:

i) slow rotation—w? < %— cosf — —§= # 0 and

R
Op =0

i) fast rotation—w” > Z—equilibrium at 0 =

—1 q
:|: COS :rR

System is symmetric but ground state is not!

This is Spontaneous Symmetry Breaking!!




Quantum Mechanical Symmetry
Breaking

Also called "anomalous’ symmetry breaking. Occurs
when symmetry is broken upon quantization. Hard to
find non-field theory examples, but here is one:

Consider free particle, with Schrodinger equation:

Partial wave solution is

0(7) = Txk(r) Pi(cos )



where

( 42 1(1+1)

 dr? + 72

+ kg) xk(r) =0

Note invariance under scale transformation

A k — —k
T — AT ﬁ)\

Consequence: For plane wave solution

gihz 25 2;? > (21 + 1) Py(cos 0) (eﬁ'”" — e_i(k’"_h))




Note phase shifts /7 independent of energy—scale
symmetry!

If a potential V() then scale invariance is broken—

1 : : _
W) = 3 (211 Pi(eos 0)( )

Usually write as

kT
B = e+ — £(0)

T



with

fk(g):Z(Ql—Fl)E Qik_ Pi(cos0)

Phase shifts now a function of energy but OK, since
scale symmetry broken.

Now look at two dimensions:

and



Z Qzﬁm(k) 1 g
€
m=—o00 v

fr(0) =

Now introduce potential

V(r) = g6*(F)

Note does NOT break scale symmetry.



Cross section i1s found to be

do ™ 1
a0 2k (1 £2)
n

or
1. k* 2
cotdp(k) = —In— — —
T pt g

Scale invariance broken upon quantization!

This is anomalous symmetry breaking!




Usual examples from quantum field theory. However,
two examples from quantum mechanics—two
dimensional delta function potential and 1/r?

potential.

Physical example is electron in vicinity of electric
dipole, so potential is

which is separable. Write

P(r0,6) = u(r)0(6)®(¢)/r



Then ¢-independent solution satisfies

d*>u 5 5
T2 + r—zu = —R"U
d*e do
— 0z ctnﬂﬁ + Acos O = 10O
where A = 2mep and E = —k?/2m. Satisfies scale

invariance—r — or,k — k/o. So if one bound state
there exist bound state for all negative energies. Can
regularize provided that v < —1/4. Yields critical
dipole moment



Perit = 0.6393148771999813... /em

Problem first solved by Fermi and Teller and then
rediscovered later. Connection with scale invariance
recent—Camblong et al. For physical dipole—p = Qd—
shown to be independent of d. Studied experimentally



Electron binding E;/meV

0478 78 10

Dipole moment p/D

Clear there exists critical value, but connection with

- EIP ., 1 9 theory
anomaly unclear since p_ 7, ~ 1.2p ",



In QFT anomaly found when Sutherland " proved” that
decay 7 — ~~ could not occur in chiral limit since

d-V =3d-A=0. Shown by Adler, Jackiw and others

that because of anomalous symmetry breaking

9-V=0 but 9-A=>"Frre, 5o

8T
leading to

'y =774 eV

in good agreement with particle data value.



Why not found earlier? Fermi and Teller calculation
did not involve symmetry since they could do problem
exactly, but could have.



Summary 3

Symmetry principles important to physics, but in
general is broken

Three types of breaking:
1) Explicit Symmetry Breaking
i) Spontaneous Symmetry Breaking

iii) Anomalous Symmetry Breaking



Symmetry and Effective Interactions

What is an effective interaction?

Answer: An interaction valid only in a limited range of
parameter space

Classical Mechanics: Gravity

) V(r) = —G™¥E valid for all » > Ry

i) V(r) ~mg(r — Rg) valid for r — R << Ry,

Effective interaction form is ii) and is much easier to
use!



Equivalently look at force:
) F = —GLEEF valid for all 7 > Ry

i) F = —mg valid for r — Ry << Ry Again second
(effective) form is easier to use!

Why the Sky is Blue

A: Classical Physics Approach: Rayleigh Scattering

Atom i1s Harmonic Oscillator with frequency wy

Equation of motion in presence of w photon

d*z
L S —iw 2=
m—— = eEge™ b — mwiT
dt



(Particular) solution

(,E[] f 1t
I{'{J - L) 1]
m wg — w*
has acceleration
d*’T —wleEy et
dt? m wqu — w?

Accelerating charge radiates: then if w? << wj




Start with Hamiltonian

2
H=(p cA) + e

2m

Feynman diagrams:

SAYA

Leads to Kramers-Heisenberg amplitude
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L x—, &f < 0|pe ™ "|n >< n[pe'T 7|0 > -¢;
o 2 gy
m - w; + ED En

Amp = —

¢ < 0[pe’@™n >< n|pe™"UT|0 > .gf)]
E{] - Lr.a‘f — En

Homework problem gives, in limit when w << F,, — Fj

”'.{T 34 2 {.Lfg
— = A\ w C€; 14+ 0O :
a0 €5 < ( O - En)f))

with

1.€.,



Need effective Hamiltonian which is
i) quadratic in A
ii) gauge-invariant
iii) rotational scalar
iv) P, T invariant

v) etc.



Simplest form is then

Hepp = —

[

- | -
4?&'51‘72 — 545‘1’{3‘.1;}‘{2

b | =

Here avp, 31s have dimensions of volume—

(] ;:;ﬁﬂ; s n:g

Then

der ,
—_— ugw”!r

ds2



Example from Quantum Mechanics

Consider system of atoms and photons, with path
integral

7 = /[dq/;][dA”] C}{p[i/dﬁ(Lamm('Z/J)+L¢(AH)‘|’Lint(Q/):A,u)]

If now integrate out atoms, find effective Lagrangian

Leff [A.u]

7 = / dA,] expli f dtLess(Ay)]

where

expli / dtLess(A,)] = ./[d-zf}] expli / dt(Latom(V)+L~(Apu)+ Lint (¥, A,)]



Still have photons propagation but now with index of
refraction.

If integrate out photons, find effective Lagrangian

7= [lav)expli [ dtesso)

where

expli / QLo s (1)) = / dA,] expli / At Latom(t)+ Loy (A)+ Ling (10, A)

Still have atoms but now with complex energies,
corresponding to decay rates.



Condensed Matter Physics

Superconductivity

Underlying physics: electron-lattice interaction

Cooper pairing of anticorrelated electrons near
Fermi surface leads to BCS Hamiltonian

N (2R
HBCS B Z Y ks (![if 2m 1“’) *'“L‘.s

k.s

.-T - 1=
_"fZ* ik Y-k Yk

Can be solved W|th standard many-body methods—
leads to energy gap and superconductivity provided
temperature is low enough.






Physics is hidden, so use alternative approach: use
finite temperature imaginary time methods to write
Lagrangian in terms of two electron state ¢.

Use identity

[[D@|[D¢*| exp —r2 [ dr [ dPr(p — LLpahs) (6 — Lihpeb)

[[DA|D] exp —r? [T dr [ dPreo
Then

Z = Constx [[DY][DI][Dg][Dg"

8 . V +ieA)?
X exp —Z/ﬂ r}h"/ d.-ﬂm-:'}ﬁ(;r - (v + ied) — 1)

2m

.ﬁ _ ﬂ - = . . &
X (3Xp[—ﬁ:2/n r}ffrf Pro*o + \/gﬁ'.-/n fi’?’fﬂﬁ?‘(ﬂ-ﬁ'}a%{}ﬁgz}—{— Vs1had”)]



Now integrate out single electron fields to yield effective
Lagrangian in terms of ¢

Z = Const' x f [DP|[D*] exp —k> A " dr / d°r¢* Leg ¢



Calculate diagrams:

Yields Landau-Ginzburg interaction



T(—-.iﬁ — ff*ﬁ)g

2m*

Hﬁff — “(T)(f’ ﬁ"'?—i-il-(T)(.";-Tr,-":—}—,’;(T}(,r_l.f')Tﬁf})Q_}__ N

Here ¢(T"), b(T") monotonic but a(T')  log f—c

Then if T > T, potential has shape of single well
with minimum at ¢'¢ ~ p = O—nonsuperconducting

state.

If T < T. shape is double well with minimum at
q‘ﬁrjx ~ p # O—superconducting state.

Physics clearly seen in Landau-Ginzburg form—
spontaneously broken gauge invariance.



Want QCD analog of Superconductivity

Superconductor:

i) integrate out lattice from L(e™ — lattice)

i) write Lagrangian in terms of ¢ ~ e~ e

L(¢) encodes basic physics—

Spontaneously broken gauge invariance



i) integrate out gluons from £(q — —gluons)

i) write Lagrangian in terms of ¢ ~ qq

L(¢) encodes basic physics:
Spontaneously broken chiral invariance
Begin with QCD Lagrangian

1
Loop = (i P —m)q — 7GuG"”

But



i) QCD written in terms of "wrong degree
freedom—q, A,

ii) nonlinear due to A°, A couplings
iii) strong coupling theory—g? /47 >> 1

Solution is to use chirality operators:

1
qdrL.r = ;(1 + ’}'5)0

of



Then

q(e D —m)q = qri Dqr +qrt Pgr —m(qrqr + qrqr)

Then SU(3)r x SU(3)r (chiral) symmetry in m = 0

limit

Axial symmetry spontaneously broken—Goldstone
bosons

Define



Then

F- . R2
Leps =~ T OWTOTUT) + - r(Bom (U + V)

Gives

i) Gell-Mann-Okubo relatinn—.‘%mﬁ +m2 —4m3. =0

- - - 0 o Tm_ 2 -

ii) Weinberg scattering lengths—ay = Som b2 A0 =
__mg _
167 F2

Tree level predictions. Loops give unitarity and
also infinities. What to do? Weinberg (1979)—absorb
divergences in phenomenological constants, just as in

QED.

In higher orders gives chiral perturbation theory—
Gasser and Leutwyler.



Not renormalizable—loops give new forms

10
Li=Y LiO;= L [tr(D#UD“UT)]

=1

+Lotr(D,UD,U" - tr(D*UD"UT)
+Latr(D,UD*UTD,UD"UT)
+Latr(D, UD*UNtr(xUT 4 UxT)

|.")

+Lstr (D, UD*U" (xU" + Ux"))+ L [tr (xU"+ Ux") ] -
2
+ L~ [t.r (;(TU — U){T) }
+ Lgtr ()(foUT + U}{TU')(T)
+iLotr (Fy,, D*UD"U" + Fl: D*U'D"U)
+Lyotr (FL UFR#UT)



where
DU =0,U+{A,U}+ [V, U]
and

L.R _ n pL.R o pL,R _ :pL,R pL.R
rp,r_r _ d,l'-rf FL-' d"’ F,u ;'[F,H % FH ]

Frft=V,+ A,

. Renormalized parameters:

- Vi |2
LT =1L;— 39,3 [T — In(47) + v — 1]



Found experimentally:

Coefficient Value Origin
LY 0.65 + 0.28 7 scattering
Lj 1.89 £+ 0.26 and
L —3.06 £ 0.92 K4 decay
Lz 2.34+0.2 Fg/F;
L§ 7.1£03 7 charge radius
1o —5.6 0.3 T — evry
Examples of predictions:
Reaction Quantity Theory Experiment
T = eTwey hy (mr ) 0027  0.029 + 0.017
7T = etveeTe™ ry/hy 2.6 2.3+ 0.6
+ 4= . - e 3 ) .
g — 97 {n}¢+,'§ﬂ;][][} ) fm™) 0 1.44+ 3.1
ap (1074 fm?) 28 6.8+ 1.4
12 +20
2.1+ 1.1

It works!



Chiral predictions for aj and aj

<002

-0.03

2.0.04
a
0
-0.05
| Iniversal Band
« tree one loop, two loops
— !4=4.4iﬂ_2, 13 free
006 I3: 29424 ]4 free
| ) I ) | — Colangelo, Gasser & Leutwyler 2001
0.16 018 0.2 0.22 0.24 026
0
a



Polarizabilities

Answer: A measure of response of system to quasi-
static electric and /or magnetic field. Simplest example:

electric polarizability «p—applied electric field E
induces EDM ¢’

—

p= -']?rngf:_j
Equivalently energy density is
1

—
u=——4rapk~

2



Proton electric polarizability

[+++++++++++++ /

Electric polarizability: proton between charged parallel plates




Similarly  magnetic  polarizability
magnetic field H induces MDM m

m = Ar By H
with energy density

1 .
U = —§4wﬁMHE

.-'i‘.”—a pp| I'Ed



Proton magnetic polarizability

| SSSS555S5S5SSS /
Diamagnetic + é‘
..--""""'H

Paramagnetic @ §

pion ¢loud
Paramagnetic
A(1232)

Pa—

Magnetic polarizability: proton between poles of a magnetic




How to measure? Compton scattering—if

- (ﬁ_ e;’ﬁi‘)? ]. =2 ]_ 32
H = o 24?rrrbE 24?r{iuH
ith
B Fo-2%1 G_%xai
ot 4, N
then

T=¢-¢ (—Q— + ww —lﬁ(lb) + € X k& x E"—iﬁ;;ﬂu

Tri

and



¥

do a® (" I(l' 052 0) mww'’
A m? \w 20 o v

—|—]{ ‘ v — (3 '
. |i”f—”(] + (‘{}HH)E + ”—”(] - ‘"UHH)E] + .. )

2 2
Results from MAMI (TAPS), lllinois, Saskatoon for

proton

of, = (12.0£0.6)x10™* fm”,  Bpr = (1.9570.6)x 10~* fm”



What have we learned?

i) Size of ay; measures "stiffness” of system. For H
atom well known calculation yields

9 27
ag = —a‘z_-’, = 8—7T-V01

while for proton
ab, ~ 3 x 107 *Vol

so proton is very "stiff’. Handwaving estimate is

P I/ H 2
O“b/‘ ol. Ebznd/m = Yem 10—4
2

ap /‘/0[ bznd/Tn astrong




i) A pole makes a very strong paramagnetic
contribution to 3,y ~ +10 x 10~4fm® so proton
must have strong diamagnetic component to cancel
this.

iil) Presumably comes from meson cloud component—
indeed simple quark model picture gives

erp

al, = 2am, < ?“3 >%>> af

so meson contribution needed.



Estimate via chiral perturbation theory (Bernard,
Kaiser, Meissner):

2 - o
B agi DT 33 -
ok, = 1872 F20,, I:Qﬂ- + 18log 1t + DY + O(;L]} =74
‘} L]
gy T _ 63
UM T 4872 F2 M, [4,[1.“ oBpt g +O(”)} .

with gt = m,/m,, in units of 10~*fm®.



If take only leading term (O(¢”) HBChipt), then

5g°
P QP A
ay. = 1045, = = 12.2
E M 067 F2m .
in perfect agreement with experiment. Clearly

accidental since O(q*) calculation gives

(ri, = 10.5+2.0 and ﬂif =3.5+3.6



Conclude:

symmetry a powerful constraint on physical systems

use of symmetry makes solutions often MUCH
simpler

take time to find all possible symmetries of system—
time well spent!



