

Thomas K Hemmick Stony Brook University

COURAGE

INTENTION

For the Students!

- This talk is not targeted at the experts.
- **Students should EXPECT to understand.**
- Whenever the speaker fails to meet this expectation:

INTERRUPT!

Physics beyond the diagram!

- The water droplets on the window demonstrate a principle.
- Truly beautiful physics is expressed in systems whose underlying physics is QED.

- Does QCD exhibit equally beautiful properties as a bulk medium.
- ANSWER: YES!

strong force binds protons and neutrons bind in nuclei

~10 µs after Big Bang T~200 MeV second

Hadron Synthesis

(E.)0

24

23

degrees

ê o

ē o

strong force binds

quarks and gluons in massive objects:

9. •

9

10¹⁵

é

Planck scale T ~ 10¹⁹ GeV

End of Grand Unification

inflation 10³² degrees

²⁷ degrees

tons, neutrons

~ 100 ps after Big Bang T~<u>10¹⁴ GeV</u>

Electroweak Transition explicit breaking of chiral symmetry 10¹⁰ degrees

22

W.S.

(P. e.

e 😦

SAA.

s

60

e

• (৯

🖲 (uis

e e

20

"Travel" Back in Time

study QCD confinement and how hadrons get their masses

Estimating the Critical Energy Density

Thomas X Hemmick

Critical Temperature and Degrees of Freedom

Noninteracting system of 8 gluons with 2 polarizations

and 2 flavor's of quarks (m=0, s=1/2) with 3 colors

In thermal equilibrium relation of pressure P and temperature T

$$\varepsilon_{2-flavor} = \left(2_f \cdot 2_s \cdot 2_q \cdot 3_c \frac{7}{8} + 2_s \cdot 8_c\right) \frac{\pi^2}{30} T^4 = 37 \frac{\pi^2}{30} T^4$$
$$\varepsilon_{3-flavor} = \left(3_f \cdot 2_s \cdot 2_q \cdot 3_c \frac{7}{8} + 2_s \cdot 8_c\right) \frac{\pi^2}{30} T^4 = 47.5 \frac{\pi^2}{30} T^4$$

Assume deconfinement at mechanical equilibrium
Internal pressure equal to vacuum pressure B = (200 MeV)⁴

$$T_c^4 = \frac{B}{4} \implies T_c = \frac{200 \, MeV}{\sqrt{2}} \Box 140 \, MeV$$

Energy density in QGP at critical temperature T_c

$$\varepsilon_c(T_c) = 0.6 \ GeV / fm^3$$

Lattice Calculations

The onset of П **QGP** is far from the perturbative regime ($\alpha_s \sim 1$) Lattice QCD is П the only 1st principles calculation of phase transition and QGP.

PHXENIX

Thomas X Hemmick

Lattice Calculations indicate:
T_c~170 MeV
ε_c~1 GeV/fm⁴

Stony Brook University

Outline of Lectures

- What have we done? П
 - **Energy Density**
 - **Initial Temperature**
 - **Chemical & Kinetic Equilibrium**
 - System Size
- **Is There a There There?** Π
 - The Medium & The Probe
 - **High Pt Suppression**
 - Control Experiments: γ_{direct} , W, Z
- What is It Like? П
 - Azimuthally Anisotropic Flow
 - Hydrodynamic Limit
 - **Heavy Flavor Modification**
 - **Recombination Scaling**
- Is the matter exotic? П
 - Quarkonia, Jet Asymmetry, **Color Glass Condensate**
- What does the Future Hold?

Stony Brook University

RHIC Experiments

LHC Experiments

Stony Brook University

What have we done? Energy Density

• Let's calculate the Mass overlap Energy: () 2 2 2150 GeV

 $\langle \varepsilon \rangle = 2\rho_0 \gamma^2 = 3150 \frac{GeV}{fm^3}$ $\rho_0 = 0.14 \frac{GeV}{fm^3}; \gamma_{RHIC} = 106$

Overly Simplified: Particles don't even have to interact!

Bjorken Energy Density Formula:

Thomas X Hemmick

Stony Brook University

п

Remote Temperature Sensing

- Hot Objects produce thermal spectrum of EM radiation.
- Red clothes are NOT red hot, reflected light is not thermal.

Photon measurements must distinguish thermal radiation from other sources: HADRONS!!!

Not Red Hot!

Thomas & Hemmick

Real versus Virtual Photons

Direct photons $\gamma_{\text{direct}}/\gamma_{\text{decay}} \sim 0.1$ at low p_{T} , and thus systematics dominate.

Number of virtual photons per real photon:

 $\frac{1}{N_{\gamma}}\frac{\mathrm{d}N_{ee}}{\mathrm{d}m_{ee}} = \frac{2\alpha}{3\pi}\frac{1}{m_{ee}}\sqrt{1-\frac{4m_{e}^{2}}{m_{ee}^{2}}\left(1+\frac{2m_{e}^{2}}{m_{ee}^{2}}\right)S}$

Point-like

 $S \approx 1$ **process:** (for $p_{T}^{ee} \gg m_{ee}$)

About 0.001 virtual photons with $m_{ee} > M_{pion}$ for every real photon

Avoid the π^0 background at the expense of a factor 1000 in statistics

Observation of Direct Virtual Photons

Experimental Result

Thermal Equilibrium

We'll consider two aspects of thermal predictions:

Chemical Equilibrium

Are all particle species produced at the right relative abundances?

- Kinetic Equilibrium
 - **Energetic sconsistent with common temperature plus flow velocity?**
- Choose appropriate statistical ensemble:
 - Grand Canonical Ensemble: In a large system with many produced particles we can implement conservation laws in an averaged sense via appropriate chemical potentials.
 - Canonical Ensemble: in a small system, conservation laws must be implemented on an EVENT-BY-EVENT basis. This makes for a severe restriction of available phase space resulting in the socalled "Canonical Suppression."
 - Where is canonical required:
 - Iow energy HI collisions.
 - high energy e+e- or hh collisions
 - Peripheral high energy Hl_collisions

Stony Brook University

Chem Eql: Canonical Suppression

Tounsi and Redlich, hep-ph/0211159

for $N_{part} \ge$ 60 Grand Canonical ok to better 10%

Canonical Suppression is likely the driving force behind "strangeness enhancement"

Thermal or Chemical yields

As you know the formula for the number density of all species:

$$n_{i}^{0} = \frac{g_{i}}{2\pi^{2}} \int \frac{p^{2} dp}{e^{(E-\mu_{B}B_{i}-\mu_{s}S_{i}-\mu_{3}I^{3})/T} \pm 1}$$

here g_i is the degeneracy E²=p²+m²

 $\mu_{B}, \mu_{S}, \mu_{3}$ are baryon, strangeness, and isospin chemical potentials respectively.

- Given the temperature and all m, on determines the equilibruim number densities of all various species.

Stony Brook University

Chemical Equilibrium Fantastic

25

Stony Brook Universitu

Simple 2parameter fits to chemical equilibrium are excellent.

Description good from AGS energy and upward.

Necessary, but not sufficient for QGP

Thomas K Hemmick

Kinetic Equil: Radial Flow

- As you know for any interacting system of particles expanding into vacuum, radial flow is a natural consequence.
 - During the cascade process, one naturally develops an ordering of particles with the highest common underlying velocity at the outer edge.
- This motion complicates the interpretation of the momentum of particles as compared to their temperature and should be subtracted.
 - Although 1st principles calculations of fluid dynamics are the higher goal, simple parameterizations are nonetheless instructive.
- Hadrons are released in the final stage and therefore measure "FREEZE-OUT" Temp.

Stony Brook University

Radial Flow in Singles Spectra

Peripheral:

- Pions are concave due to feeddown.
- □ K,p are exponential.
- Yields are MASS ORDERED.

• Central:

- Pions still concave.
- **Kexponential.**
- p flattened at left
- Mass ordered wrong (p passes pi !!!)

Underlying collective VELOCITIES impart more momentum to heavier species consistent with the trends

Thomas X Hemmick

Stony Brook University

Decoupling Motion: Blast Wave

Let's consider a Thermal Boltzmann Source:

$$\frac{d^{3}N}{dp^{3}} \propto e^{-E_{T}}; E\frac{d^{3}N}{dp^{3}} = \frac{d^{3}N}{m_{T}dm_{T}d\phi dy} \propto Ee^{-E_{T}} = m_{T}\cosh(y)e^{-m_{T}\cosh(y)/T}$$

If this source is boosted radially with a velocity β_{boost} and evaluated at y=0:

$$\frac{1}{m_T} \frac{dN}{dm_T} \propto m_T I_0 \left(\frac{p_T \sinh(\rho)}{T} \right) K_1 \left(\frac{m_T \cosh(\rho)}{T} \right)$$

where $\rho = \tanh^{-1}(\beta_{boost})$

 Simple assumption: uniform sphere of radius R and boost velocity varies linearly w/ r:

$$\frac{1}{m_T} \frac{dN}{dm_T} \propto \int_0^R r^2 dr m_T I_0 \left(\frac{p_T \sinh(\rho)}{T}\right) K_1 \left(\frac{m_T \cosh(\rho)}{T}\right)$$
$$\rho(r) = \tanh^{-1} \left(\beta_T^{MAX} \frac{r}{R}\right)$$

Stony Brook Universe

iomas X Hemmick

Stony Brook University

Provide Vice Vice

STONY Intensity Interferometry PHENIX

- All physics students are taught the principles of amplitude interferometry:
 - The probability wave of a single particle interferes with itself when, for example, passing through two slits.
- Less well known is the principle of intensity interferometry:
 - Two particles whose origin or propagation are correlated in any way can be measured as a pair and exhibit wave properties in their relative measures (e.g. momentum difference).
 - Correlation sources range from actual physical interactions (coulomb, strong; attractive or repulsive) to quantum statistics of identical bosons or fermions.
- Measurement of two-particle correlations allows access space-time characteristics of the source.

Stony Brook University

Thomas X Hemmick

Boson Correlations

- Consider two particles emitted from two locations (a,b) within a single source.
- Assume that these two are detected by detector elements (1,2).

□ The two paths $(a \rightarrow 1, b \rightarrow 2)$ and $(a \rightarrow 2, b \rightarrow 1)$ are indistinguishable and form the source of the correlation:

$$A = \frac{1}{\sqrt{2}} \left(e^{ik_1^{\mu} (r_1 - r_a)^{\mu}} e^{ik_2^{\mu} (r_2 - r_b)^{\mu}} + e^{ik_1^{\mu} (r_1 - r_b)^{\mu}} e^{ik_2^{\mu} (r_2 - r_a)^{\mu}} \right)$$
$$I = |A|^2 = 1 + \left\{ e^{i(k_2 - k_1)^{\mu} (r_a - r_b)^{\mu}} + c.c. \right\}$$

 The intensity interference between the two point sources is an oscillator depending upon the relative momentum q=k₂-k₁, and the relative emission position!

Stony Brook University

The source density function can be written as

$$E_p \frac{dN}{d^3 p} = \int d^4 x \, S(x, p)$$

We define the 2-particle correlation as:

$$C(p_1, p_2) = \frac{E_1 E_2 dN / (d^3 p_1 d^3 p_2)}{(E_1 dN / d^3 p_1) (E_2 dN / d^3 p_2)} \,.$$

To sum sources incoherently, we integrate the intensities over all pairs of source points:

$$C(q, K) = 1 \pm \frac{\left|\int d^4x \, S(x, K) \, e^{iq \cdot x}\right|^2}{\int d^4x \, S(x, K + \frac{1}{2}q) \, \int d^4y \, S(y, K - \frac{1}{2}q)} \approx 1 \pm \left|\frac{\int d^4x \, S(x, K) \, e^{iq \cdot x}}{\int d^4x \, S(x, K)}\right|^2$$

Here q,K are the 4-momentum differences and sums, respectively of the two particles.

Stony Brook University

Thomas K Hemmick

- No. If the source contains any collective motions (like expansion), then there is a strong position-momentum correlation.
- Gee...the correlation function is simply the Fourier Transform of S(x,K). All we need do is inverse transform the C(q,K) observable!!
 - Um...no. Particles are ON SHELL.
- Must use parameterized source.

$$C(q,K) = 1 \pm \lambda(K) \exp\left(-R_s^2(K)q_s^2 - R_o^2(K)q_o^2 - R_l^2(K)q_l^2\right)$$

Stony Brook University

Thomas X Hemmick

Building Intuition

- The "under-measure" of the source size for a flowing source depends upon the flow velocity:
 - Higher flow velocity, smaller source.
- We expect that the measured Radius parameters from HBT would drop with increasing K (or K_T).

$$R_o^2(K) = \left\langle \widetilde{x}_o^2 \right\rangle - 2\beta_T \left\langle \widetilde{x}_o t \right\rangle + \beta_T^2 \left\langle t^2 \right\rangle$$
$$R_s^2(K) = \left\langle \widetilde{x}_s^2 \right\rangle$$
$$R_l^2(K) = \left\langle \widetilde{z}^2 \right\rangle \quad \left(=\tau^2 + t^2\right)$$

Stony Brook University

Thomas X Hemmick

Thomas X Hemmick

 $\Delta \tau = \sqrt{R_{Out}^2 - R_{Side}^2}$ Vanishing emission time?

side **Surprising!**

Just as one expects for

 $R(k_{T})$ drops with increasing k_T

homogeneity length...

R(Au) ~ 7 fm, R(HBT)<6 fm

No problem, its only a П

k_T (GeV/c)

PHENIX 2x*, Au-Au 200 GeV PHENIX 2x, Au-Au 200 GeV

STAR 2x, 0-5% Au-Au 200 GeV STAR 2x, 5-10% Au-Au 200 GeV

Some Results

R_{side} (fm)

П

- Increase of the radii with dN_{ch} / $d\eta$ for central collisions consistent with models
- Increase of the "homogeneity volume" over most central RHIC by a factor of ~2

Is There a There There?

- We accelerate nuclei to high energies with the hope and intent of utilizing the beam energy to drive a phase transition to QGP.
- The collision must not only utilize the energy effectively, but generate the signatures of the new phase for us.
- **I will make an artificial distinction as follows:**
 - <u>Medium</u>: The bulk of the particles; dominantly soft production and possibly exhibiting some phase.
 - <u>Probe</u>: Particles whose production is calculable, measurable, and thermally incompatible with (distinct from) the medium.

The medium & probe paradigm will establish whether there is a there there.

Stony Brook University

The Probes Gallery:

Stony Brook University

38

Thomas X Hemmick

Calibrating the Probe(s)

- Measurement from elementary collisions.
- "The tail that wags the dog" (M. Gyulassy)

Stony Brook University

hep-ex/0305013 S.S. Adler et Alemmick

R_{AA} Normalization

Compare Au+Au to nucleon-nucleon cross sections
Compare Au+Au central/peripheral

Stony Brook University

Thomas X Hemmick

Discovered in RHIC-Year One

Suppression Similar @LHC

 Suppression of high momentum particles similar at RHIC and LHC.

Both are well beyond the phase transition.

Stonu Brook Universitu

Thomas X Hemmick

Control Measures for R_{AA}

- R_{AA} intrinsically scales the pp reference by <N_{coll}> as the denominator.
- Validity of this for colorless probes should be established.
- At RHIC was use direct photons at large p_{T} .

7

10'0

10 20 30 40 50 60

70 80 90

 p_{τ}^{μ} [GeV]

0-

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-centrality

Jet Tomography

- **Tomography, a fancy word for a shadow!**
- Jets are produced as back-to-back pairs.
- One jet escapes, the other is shadowed.
- **Expectation:**
 - "Opaque" in head-on collisions.
 - "Translucent" in partial overlap collisions.

X-ray pictures are shadows of bones

Can Jet Absorption be Used to "Take an X-ray" of our Medium?

Thomas X Hemmick

Back-to-back jets

- **Given one "jet" particle, where are it's friends:**
 - Members of the "same jet" are in nearly the same direction.
 - Members of the "partner jet" are off by 180°
- Away-side jet gone (NOTE: where did the energy go?)

Singles to Jets

- Parton pairs are created at the expected rate (control measure).
- Parton pairs have a "k_T" due to initial state motion.
- Partons interact with medium (E-loss,scattering?)

- Fragment into Jets either within or outside the medium.
- **To be Learned:**
 - **E-loss will created R_{AA}{Jets} < 1.**
 - Scattering will make back-to-back correl worse (higher "k_T")
 - **Fragmentation function modification possible.**

Moving from Singles to Jets...

1.2

LHC shows loss of Jets similar to loss of hadrons.

Centrality dependence of charged hadron RCP

цц,

- **Huge Asymmetry** signal in ATLAS and CMS.
- **Must understand the** П nature of this loss...

dN/dA

0-10%

30-40%

60-80%

ATLAS Preliminary

Pb+Pb\s_NN=2.76 TeV

ATLAS Preliminary

50 < E_r < 75 GeV

Jet Direction

- Overwhelmingly, the direction of the Jets seems preserved.
- This is a shock...
- How can you lose a HUGE amount of longitudinal momentum and not have a "random walk" that smears back-to-back.
- **Top Puzzle from LHC.**

Summary Lecture 1

- Heavy Ion collisions provide access to the thermal and hydrodynamic state of QCD.
- RHIC and LHC both provide sufficient energy to create the form of matter in the "plateau" region.
- The matter is opaque to the propagation of color charge while transparent to colorless objects.
- Coming in Lecture #2:
 - **The medium behaves as a "perfect fluid".**
 - **Fluid is capable of altering motion of heavy quarks (c/b).**
 - Descriptions from string theory (AdS/CFT duality) are appropriate.
 - Indications of yet another new phase of matter (Color Glass Condensate) are beginning to emerge.

