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What is a QGP?

 Types of strongly interacting matter
 The QCD Vacuum
 The perturbative QGP
 The strongly coupled QGP (sort of)
 The off-equilibrium QGP
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Part 1
The QCD Vacuum
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Quantum Chromo-Dynamics is the gauge theory of SU(3) color and
describes the interactions among particles carrying the color charge.

Invariance of derivative ∂ψ/∂x requires introduction of a vector field 

rendering invariant under gauge transformations.

U � SU(3)
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Fµ⇥ = ⇥µA⇥ � ⇥⇥Aµ � ig [Aµ, A⇥ ]
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2
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QCD in graphs
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Scalar field:

Quantization condition:

Mode decomposition:

with boson operators:

Renormalize: with
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The Casimir effect
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Bressi et al, PRL 88, 041804 (2002)
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Symmetry breaking

 Discrete degenerate minima of V(x): 
Vacuum needs to select one of the 
minima  ➨  symmetry breaking
 Local transition to other vacuum 

possible by tunneling
 Continuous symmetry of V(x): 

Vacuum chooses one point on the 
minimal surface (“moduli space”)   
➨  symmetry breaking
 Local transition to adjacent 

minimal energy configurations 
classically allowed: excitations 
are called Goldstone bosons

 In the presence of gauge fields, the 
Goldstone modes metamorphize 
into longitudinal modes of the gauge 
field and generate a mass (so-called 
Higgs mechanism)
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Dynamical symmetry breaking
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Quantum electrodynamics of a charged scalar field ϕ:

Naively: implying 

But vacuum fluctuations modify the effective potential:

implying a shift of the minimum to 

In this new minimum the gauge symmetry is
spontaneously broken, and both the electro-
magnetic field acquires a mass                     .
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Constant chromo-magnetic field:

Modes               behave like a spin-1 field with charge g in the presence of a homogeneous 
magnetic field H.   The Landau levels are:
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Constant chromo-magnetic field:

Modes               behave like a spin-1 field with charge g in the presence of a homogeneous 
magnetic field H.   The Landau levels are:
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But note:

is imaginary, indicating an instability (Nielsen & Olesen ’78). 
The vacuum energy can be lowered by allowing for a 
nonzero expectation value of the lowest Landau level ϕ.
Unfortunately, this gauge field configuration has another 
instability, with leads to a lower vacuum energy, which 
exhibits another instability, and so on, without end....
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The NO cascade

13

Once perturbed, the color-magnetic 
field decays into apparently random 
field configurations and rapidly 
reaches equipartition of energy.

A. Trayanov & BM 
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The NO cascade
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Once perturbed, the color-magnetic 
field decays into apparently random 
field configurations and rapidly 
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Remarkably, this implies that there is also a nonzero, but negative value for the mean-square 
chromo-electric field:〈E²〉= 〈-B²〉, because the vacuum energy

must vanish in the absence of external constraints. This is confirmed by QCD lattice 
simulations and by phenomenological analyses of heavy quark mesons.

Condensates

14

L � �/
�

gHR � 1/
�

gH
S-NO picture suggests that the QCD vacuum is filled with domains of chromo-magnetic
field H, which have transverse extension                       and length                       .

Independent of the precise field configuration, the QCD vacuum must have a nonzero
expectation value of mean-square chromo-magnetic field〈0｜B²｜0〉 ≈ (245 MeV)⁴.
Value from analysis of charmonium spectra (QCD sum rules).

Evac =
1
2
0 E2 + B2 0
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Melting the QCD vacuum
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At nonzero temperature, gluonic (and quark)
modes get excited:

Critical temperature is lowered when quarks are
included  →  Tc ~ 155 - 175 MeV. 

Nontrivial minimum at H ≠ 0 disappears above a 
certain critical temperature T (Rafelski & BM, 
Kapusta ’81, ....).

Comparison with empirical value of〈B²〉yields:
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Part 2
What is a QGP?
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Color screening

φa

Induced color density

Static color charge 
(heavy quark) generates 
screened potential
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Quark masses

Higgs

field

quark

Quark

condensate

quark
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Quark masses

Higgs

field

quark

Quark

condensate

quark

Heat “melts” the quark condensate: 
QCD mass disappears above Tc.  

(Partial) chiral symmetry restoration
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Polyakov Loop
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At T > 0 a gauge invariant quantity can be defined, which characterizes the confining 
properties of the QCD vacuum state: The Polyakov Loop.

 
L = 1

Nc

tr exp ig dτ A4
a∫ x,τ( )λa

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

τ

x

L

The Polyakov Loop can be interpreted as the fugacity of an isolated static quark due
to its interaction with the gauge field:

L = exp −FQ /T( )
〈L〉 = 0  implies absolute quark confinement;  〈L〉 < 1 indicates partial confinement;
in a fully developed QGP one expects 〈L〉 = 1.
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Lattice QCD
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Polyakov loop is true order parameter
for pure gauge theory, not for real QCD,
because quarks can be produced in
pairs, and color can be compensated.

Color is “unthawed” only gradually
above Tc; partial color screening.
Characteristic for strongly coupled
plasmas!
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PNJL Model
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QCD vacuum transition can be modeled by introducing an effective interaction 
among quarks which causes a quark condensate to form (Nambu--Jona-Lasinio 
model) and an effective color phase factor L (Polyakov loop), which enforces 
quark confinement when  l3  ≡〈L〉= 0.

Ratti, Thaler, Weise

Thermodynamic pressure
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Part 3
The perturbative QGP
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The perturbative QGP

Perturbative expansion of the equation of state:

Expansion in αs does not converge, one must include interactions in the particle 
modes (“quasiparticles”) as basis for the expansion:

Hard-thermal loop perturbation theory [Braaten & Pisarski 1990].

has been calculated up to order αs3 ln(αs)  [Kajantie et al., hep-ph/0211321].
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Quasiparticles in the QGP

Physical excitation modes at high T are not elementary quarks and gluons, but 
“dressed” quarks and gluons:

T

Propagator of transversely 
polarized gluons

→ Effective gluon mass:
mPlasmon k→0⎯ →⎯⎯ 1

3
gT

mGluon k→∞⎯ →⎯⎯ 1
2
gT

mD
ω=0
k→0⎯ →⎯⎯ gTScreening of longitudinally polarized gluons (Debye mass):
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Quasiparticles in the QGP

Physical excitation modes at high T are not elementary quarks and gluons, but 
“dressed” quarks and gluons:

T

Propagator of transversely 
polarized gluons

→ Effective gluon mass:

Compton scattering 
on a thermal gluon!

mPlasmon k→0⎯ →⎯⎯ 1
3
gT

mGluon k→∞⎯ →⎯⎯ 1
2
gT

mD
ω=0
k→0⎯ →⎯⎯ gTScreening of longitudinally polarized gluons (Debye mass):
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Screened perturbation theory
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Andersen, Leganger, Strickland & Su [hep-ph/1103.2528]:

Add a gauge invariant mass term, that vanishes for δ→1

with

ALSS obtained an analytic result for the equation of state at NNLO order.

mD and mq are fixed by minimizing the thermodynamic potential
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HTL PT results
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The HTL perturbation theory at NNLO seems to work well above T ≈ 300 MeV,
but with very large systematic uncertainties from setting the coupling scale.
The QGP in the RHIC/LHC domain is not weakly coupled, and even the most
sophisticated perturbative approach available is unreliable!

g(πT) ↔ g(4πT)
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Part 4
The strongly coupled QGP

(sQGP)
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Gauge-string duality
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AdS5

z, χ

r
describes
virtuality scale
of quantum
field theory

UV

IR
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Thermal holography
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z, χ

r

AdS5+BH
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Thermal holography
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z, χ

r

AdS5+BH
 

η
s
=

4π
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AdS/CFT dictionary
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HI collision                                 Energy injection
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Boundary-bulk correspondence
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 Local and nonlocal operators on the boundary

 Equation of state

 Correlators & Green functions:

 What are the spectral functions of QFT modes?

 Find Green functions from bulk and analyze

〈Tμν〉etc.

〈O(x)O(x′)〉etc.
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Spectral functions
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Start from retarded Green function

Fourier transform and identify the imaginary part:

For free massive particle:

ρ(k,ω ) = 2π sgn(ω )δ (ω 2 − k2 −m2 )

For an unstable particle:

ρ(k,ω ) = 2π Γ /ω
ω 2 − k2 −m2( )2 + 1

4 Γ
2
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Spectral functions in AdS/CFT
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Analytically known in d = 1+1 dimensions for massless field:

Spectral density is completely different - no peak, just a step:

ρ(k,ω ) = 2π sgn(ω ) ω 2 − k2( )ν θ ω 2 − k2( )
For d = 3+1 dimensions for massless field no complete analytical solution, except 
for spectral function of fluctuations of Tμν [Kovtun & Starinets]:

Conclusion: No quasi-particle like modes at all - the strongly coupled gauge plasma
behaves like “mush” or more correctly, like a “perfect” liquid.
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Sound
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Conclusion: No quasi-particle like modes at all - the strongly coupled gauge plasma
behaves like “mush” or more correctly, like a “perfect” liquid.

But there exists one nicely propagating mode: Sound!

Green’s function for (longitudinal) fluctuations of the energy density / pressure:

 
gL (k,ω ) 

1
ω 2 − cs

2k2 + iΓ sωk
2

Γ s =
4
3η +ς
s0T

is called the sound attenuation length; describes damping of 
high frequency - short wavelength sound.

But note that sound is not a “quasi-particle” in the usual sense, because the
dispersion relation ω = csk < k  is space-like!
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Part 5
The unstable QGP
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Expansion → Anisotropy

  

Perturbed equilibrium distribution:

f ( p) = f0 ( p) 1+ f1( p) 1± f0 ( p)( )⎡⎣ ⎤⎦
f0 ( p) = exp[−uµ pµ / T ]

For shear flow of ultrarelat. fluid:

f1( p) = −
5η / s
2ET 2 pi p j − 1

3δ ij( )Δ ij (u)

Δ ij (u) = ∇iu j +∇ jui −
2
3δ ij∇ ⋅u

Momentum space anisotropy of expanding fluid is a measure of 
the ratio: shear viscosity / entropy density. 

Small η/s implies nearly isotropic local momentum distribution; 
large η/s implies strong local momentum anisotropy.

QGP

X-space

QGP

P-space
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Plasma two-stream instability

v v
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Plasma two-stream instability

v v
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CPIC method
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Simulate “soft” collectice modes of 
gauge field using a spatial lattice,
the “hard” thermal modes using 
classical colored particles.

Hu & BM hep-ph/9611292

Schenke et al. hep-ph/0603029
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Color
correlation

length
Time

Length (z)

Quasi-
abelian

Non-
abelian

Noise

M. Strickland,
hep-ph/0511212

Extended domains of coherent color field can create “anomalous” contributions
to transport coefficients and accelerate equilibration (as in EM plasmas).

Turbulent color fields

39
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QGP viscosity – anomalous

Asakawa, Bass & BM, 
PRL 96: 252301 (2006) 
PTP. 116: 725 (2006)
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1/Qs Nielsen-Olesen instability of 
longitudinal color-magnetic field
(Itakura & Fujii, Iwazaki)

∂2φ
∂τ 2

+
1
τ
∂φ
∂τ

+
(kz − gAη )

2

τ 2
− gBz

⎛

⎝⎜
⎞

⎠⎟
φ = 0

Glasma instabilities

41
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