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The man who discovered how stars
shine made many other

fundamental contributions in

particle, nuclear, and condensed
matter physics, as well as astrophysics.

In particular, Hans Bethe completely
changed the way astrophysicists
think about equation of state and
nucleosynthesis issues with his 1979
insight on the role of entropy.

Bethe, Brown, Applegate, & Lattimer (1979)

Hans Bethe



Entropy
S =klogI'

a measure of a system’s disorder/order
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Entropy

entropy per baryon (in units of Boltzmann's constant k)
of the air in this room s/k ~ 10

entropy per baryon (in units of Boltzmann's constant k)
characteristic of the sun s/k ~10

entropy per baryon (in units of Boltzmann's constant k)

for a 10° solar mass star s/k ~ 1000

entropy per baryon (in units of Boltzmann's constant k)

of the universe s/k ~ 10"

total entropy of a black hole of mass M
2

2
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where the gravitational constant is G = —-
m
pl

and the Planck mass is m ~1.221x10* MeV



There is a deep connection between
spacetime curvature and entropy

Curvature
(gravitational potential well)

Entropy
ﬁ content/transport
by neutrinos

|

Entropy fundamental
(disorder) physics of the
weak interaction




Statistical Mechanics

Follow Hans Bethe and think entropy S(E,V,N) = kglogT

E(S,V,N) =TS8 - PV + uN dE = TdS — PdV + udN
think physically about p_ OE _OF
what these mean: T OVisn H= 9N sy

Define energy function with more “convenient” proper variables,
e.g., free energy-like combinations of variables. My favorite:

Thermodynamic Potential Q(7T,V,u)=FE —-TS — uN = —PV

dQ = —SdT — PdV — Ndu

g _ oS p_ 00 of)

_(9_T V,u oV T,p _@ T,V



Micro Canonical Ensemble — counting states!

Consider a system consisting of a medium and a subsystem.

\

For system as a whole energy, volume and number of particles
are fixed at Ey, V), Ny @

medium has energy, number of particles, volume, number
of quantum many-body states (number of choices), and entropy

E' N V' 15

While the subsystem has corresponding quantities E N, V,T', S

subsystem+medium=system

Note that here we will fix the volumes, so we can define system,
subsystem, and medium, and fix the temperature and
chemical potentials common to all: V’7 V, Vy are fixed; Eg, Ny are fixed; T, u are fixed



Entropy — counting many-body quantum states

Consider a system consisting of a medium and a subsystem.

['o possible many-body states in equilibrium for whole system

So = kp log I'y and probability of system i\s a whole being in

any one state is Weq = =
Ly

Note that all the medium (primed) quantities depend on the
particular quantum state of the subsystem, (y

If the medium has T choices, subsystem ' choices,

then total number of choices is

Ftot:F, - I = Stot:S/+S

in equilibrium, I'ict =19 and Siot = So

\

. ®




Entropy — counting many-body quantum states

Consider a system consisting of a medium and a subsystem.

\

If we specify that the subsystem is in one
particular quantum many-body state, ¢y @
— F; — # of choices left to the medium \

= Tiota =1 T

So the probability in equilibrium that the subsystem is in
a particular quantum many-body state a is

F/
T To

True since choices (states) are all equally likely!

Wa

If fis an operator corresponding to some physical observable,
then the expectation value of this in many-body state a is fa — <\I}a ‘f ‘ \Ija>

Average value of fin subsystem is then f = E Wa fa
o



Entropy — counting many-body quantum states

Consider a system consisting of a medium and a subsystem.

AN

when subsystem is in state a,
. / /
the medium has entropy S, = ky, log I, ~
So — S, = ki log T — ky, log T, = ky log =2 — —Jy log W,
0 Pq — FpblOglo — RplOgL, = bOgF—,——bOg e!
(87
S! — S S’
= Wo=exp| 22— ) =Aexp| =2
k1, ky,
where A = exp (—%) is a number fixed by the boundary conditions
b
05’ 05’
' =S (Ey— E,,Ng— N,) ~ S (Ey, Ng) — B, —— — N,
Sa S( 0 3 0 ) S( 0> 0) aEl N/ 8N’ E’
05’ 1 05’
from dE' = TdS' — P'dV’ + udN' = TdS' + udN' = — — and K

OE" T ON’ T

= S =8 (Ey, No) — = §' (Eo, No) —
Se = 8" (Eo, No) T T r S" (Eo, No) ( T )




Entropy — counting many-body quantum states

Consider a system consisting of a medium and a subsystem.

We got that when subsystem is in state o, the medium will havm \Q
~>

— S = 5 (Ey, No) — — §' (Ey, Ny) —
Se = 8" (Eo, No) T T r S” (Eo, No) ( T )

some fixed number

s S'(Eo,Ny) E. uN, E, — uN,
exp (kb> exp ( i T T exp T

B = A exp (S’ (Eo, No) /kn) = exp [(S" (Eo, No) — So) /kn] = fixed

1

ZWa:1 -~ B= s
S o [~ (Fte )]

Now calculate average entropy of subsystem S = SO — S’ Z W (—kp log W)

!

since we showed that Sy — S/ = —kp, log W,



Entropy — counting many-body quantum states

Consider a system consisting of a medium and a subsystem.

So we calculate the average entropy of the subsystem in equilibN \Q
~>

S = (S — S) Z Wa (—kn log Wo)
B S’ S’ (Eo, No) E, pNo\ E, — uNg,
W, AeXp(kb> Aexp( e — ka—l— ka> = B exp [—(—ka )]

Ea— Na Ea_ Na
S = ZWQ(—kblog {Bexp (— k})—;)]) :ZWQ(—kblongL TM)

E —uN
T

since N = ZWQ N, etc., = S =—k,logB +

or 'S = —kpyT'logB+E —uN or E—TS5 — uN =Q =+kyTlog B

ZWazl = B:Z exp[—l(E“_“Naﬂ = Q=FEF-TS—uN =—-PV = —kgT logZ

kpT

Eo — uNg,
where the (grand) partition function is Z = ZGXP [— ( kb; )]



Partition Functions

Ea - Na (
(grand) partition function is Z = Zexp [— ( kb; )] = Z (Wylexp | —

[0

where the sum is over the manybody states (wavefunctions) o (V)

if the number of particles is fixed use z = Z e~ Pa/bT — and F=FE—TS = —kpT log 2z

note that partition function partitions! H;Ot = H, + GAj = B, =FE;+ L,

E;,+E;

= Z:Ze(_T) =Zny - Zg
,J



|dentical Particles

Many-body wave functions must be either symmetric or antisymmetric under
exchange of space and spin coordinates of particles

U (1,2, 0i+1,.,n) =20 (1,2, ...,i+ 1,4, ....n)

BE = 4+ = bosons

FD = — = fermions



Non-interacting Gases

Consider a single momentum mode q for a system of non-interacting particles.
Two cases to consider:

[.) FD, occupation number ng = 0,1

partition function for this mode = Z4= Z P Zexp [nq : —eqT—l—,u] — 1 4 e(~€atn)/T
(6% nq

where eq = single particle energy

thermodynamic potential for this mode Q., = —k,T'log Zq = —k,T'log [1 + e(_eqﬂ’“)/T}

09, 1

average occupation probability for this mode ng = B | v (eam)/T 1
w1, e\fa™

now sum over all modes 2 = Z Qq = —TZ log [1 + e(_€q+“)/T]

q q

d>q
O=-TVg / 5 log {1 + e(_eqﬂ‘)/T}
(27)



3
O=-TVgyg / d q3 log [1 + e(_€q+”)/T}
27)

~TgV [*
isotropy = ) = g / dq q2 log {1 + 6(—€q+,u)/T}
0 \

SR

7T J
dv u

— S 1 O
by parts = Q= gV/ dq q° - . Yq
0

G e + 1 0q

: : : : L 1/2 Oe
where single particle energy dispersion relation is eq = <q2 + m2) / = 4= 4

0q €q



FD relativistic limit — €q — ¢, where qd = ‘Q|

 —gVT /OO z3

= = dxr, where degeneracy parameter is 1 =
672 et + 1 5 v P "

NI=

gVT* 7
Q re _— — F (_)
7 HFDyrel 672 °\T

Define relativistic Fermi integral of order k = Fy (n) =

I
N
3
[Q)
8
4 5
_'_
)—l
Y
<

Fi. (77) ~ k! e" for n < 0 non-degenerate

k+1 [ o© '
Fi (n) ~ Z+ ; (; a9; 772l> for n > 0 (Sommerfeld expansion) degenerate
2 T
slowly convergent since 40 = 1 ap = Ek (k+1) as= 360 (k—=2)(k—=1)(k)(k+1)
3 . (e 2
F (0) =S¢ (3) where ((3) ~1.20206  F3 (0)= 130 F(0) =15



more on Fermi Integrals . ..

dF
can show (integrate by parts) that § () =kFr_1(n)
n

= dFy(n)=kFr_1(n)dn = Fk(n)—Fk(O)zk/Oan—1 (n') dn’

but can integrate directly to find Fy(n) =In(1+e”)=n+In(1+e ")

and note that Fy(—n) =In (1 -+ 6_77)
so that Fy(n) — Fo(—n) =7

Can now use the above integral identity and successively integrate to find
the following identities. These are handy for fermions in the relativistic limit.

1 2
Fy(n)+ Fi(=n) = =n* +2F (0) = 5772 + =



Back to the thermodynamics of fermions in the relativistic limit . . .

gVT* L
Fhrel 672 °\T

o012 T3
N=—— = number density n = 9—2 E (ﬁ)
O |y 2 T

Example: relativistic electrons/positrons in equilibrium with the radiation field

.. T3 o Lo
net number of ionization electrons ng = n.- — n.+ = — [F2 ( T ) — F5 (— T )]

T
since g=2fore®, ande +eT =2y = fe— + fet = 21y =0

Using the identities for the difference of relativistic Fermi integrals of order 2 (previous page)

T3 | 772
ng = Ne— — Net+ = —2[F2(77)—F2(—77)] =51"n 1+ =
7 3 7
4
Pressure (relativistic fermions): p — _9 -~ P = ﬂ Fy (ﬁ)
672 T



0N}
or|,,

=gz R () -1 R (7))

entropy (relativistic fermions)  S/kp =

Now divide by the number of particles to get the entropy per particle:

s 4R
3

14 : .., M
_ _ £ — in degenerate limit — > 1
Nky 3 F (L) T o 5 T

dilute (non-degenerate), extreme relativistic limit for fermions  I'>u = n—=0, u—0

—1

Fs (0) = =6 .
4 (0) / dx = Z S
7 1 72
QFD ER.ND = ——gV—aT4 where we define a = —
) ) 8 3 30
E TS — P N 1
energy density p = v 5 ‘y TRV ggaT‘l pressure P = 3 p
) 4 3 272 3
entropy per unit volume S = 3 gal” = Ve gT in units of k,



fermions, relativistic and extreme relativistic dilute limits . . .

T3
number density relativistic limit n = 92—2 Fs(n)
7r
T3 3¢(3
extreme relativistic, dilute limits 7 = LN 0, n= IR, m) = n=- () gT?
T 272 4 72

Example: number density of Big Bang thermal background relic neutrinos at the current epoch.

Each spin-1/2 neutrino has g=1 and there are 6 kinds of neutrinos v, ., Vs Vps Vry Ur

Moreover, neutrinos decouple at T ~ 1 MeV, so they have relativistic FD blackbody energy spectra at the current epoch
with “temperature” a factor of (4/11)Y3 lower than the cosmic microwave background (photon) temperature T,=2.75K

3¢(3) ({)(275K-8.617 x 107" MeV/K)"

~ 345cm 3
4 72 (hc)3

(@]

n —=

where we use he~197.33MeV fm, 1fm =10"cm



Example: add thermodynamic potentials for relativistic particles (-) and anti-particles (+) in equilibrium.
An example might be electrons and positrons in equilibrium with the radiation field. In either case,
equilibrium implies (Saha equation) that the (total) chemical potentials for the particles and antiparticles

are equal and of opposite sign, as in the above example for relativistic electrons/positrons: 4 = —pu_
4
gV T = — =
=  Qiot =02 4+Q, =— F(—)+F —

using the identity for the appropriate sum of relativistic Fermi integrals this becomes

gV T [7nt 7% /uN\2 1 /p_\*
om v )+ ()
o ot TR 672 [60+2 7) Ta\7

From this can get pressure, entropy, number density, etc., for a gas of, e.g., electrons and positrons
in equilibrium. Check against example for number density of electrons minus positrons.



An aside on electron Fermi energies/chemical potentials

This is a tricky and confusing issue in the literature and in books on stellar interiors and evolution.

The root of the confusion stems from whether or not the electron rest mass is included in the
Fermi energy and chemical potentials

For example, some works (e.g., BBAL 1979) include rest mass in the chemical potentials for electrons
but not for neutrons and protons.

We will use the following convention for electron/positron chemical potentials:

total Fermi energy (chemical potential) ji.- = W& = Ug +mec?

Here UL is the kinetic chemical potential (kinetic Fermi energy)

Taking as an example electrons and positrons in equilibrium with the radiation field
(though the conclusions apply to any such particle/antiparticle pair)

e” +e" =2y = Sahaequation .- + fle+ = 2y =0 = flet = —fe-

+ - + -
= Wg =-W§ = Ut =-Ug —2m.c?

Example: in the very low density, high temperature (dilute) limit

+ — —
= e =WE = -WE = —per — 0 = Ug =Uf =-m.c®~ —0.511MeV



More on electron Fermi energy (chemical potential):

Example:

For any density and zero temperature (arbitrary kinematics, but degenerate limit)

_ 1/2
Ug ~ 0.511MeV [(1.02 x 1074 (pY.)*® + 1) - 1] with p in gem ™3

3 3

= pe- = 11.1MeV (p10 Ye)l/?’ when pY, > 10°gecm™2, where pig = p/10'° gem™

In this latter limit, at densities this high ,the electrons are very relativistic and the electron rest mass
is small compared to the Fermi energy

In general, for any temperature and density, but arbitrary kinematics for electrons/positrons

_ 1 [/ mec? 5 oo 5
net electron number density 19 = ne- — N+ = pYe Nao = — p drx* (S —S4)
s C 0

-1

U-Ug
with = =p/m.c® and, e.g., S_ = [exp (TF> +1

and where the kinetic energy is related to the momentum by U = (p2 c? +m? 04)1/2 — M.



fermions, nonrelativistic

The general thermodynamic potential for fermions was

0 —

A s ! 9V [ (2 )Y 1

672 J, €q eCa—m/T 41 4= =5 a” M " leam/T 1 Ya

m

where we use qdq = eqdeq and m is the particle rest mass

now define €q =€q —m and g =p—m and note that e€q — p=€q — 1 and déq = deg

neglecting kinetic energies relative to mass, we get

V/2m3/2 [ ~3/2 V /2 m3/2 T5/2
QrFp NR ~ _ v2m __‘a déq = 9 v2m F3/9 (1)
’ 32 e(€a—n)/T 4 1 372
M
with 7= —
=7
. | Q  gV2m?2T/? )
In this limit the pressureis P = v = 52 F3/9 (1)
. . ) 1 02 g \/im3/2 T3/2
and the number of particles per unit volumeis n = — | ——
V o) |y 272

Fi 9 (1)



To make contact with our previous notation for Fermi energies and chemical potentials,
note that, e.g., for electrons,

kinetic chemical potential (kinetic Fermi energy) Ug = [i.-

and similarly for other particles, with all other notation generalized in obvious fashion.



fermions, non-relativistic: entropy

entro er particle S _ —i @ ? F3/2 (£) _ E
py per p N ky, N \oT Vi 3 Fi/o () T

. .. S w2 T

entropy per particle completely degenerate limit —>1 = = — —

Example: what is the entropy per baryon in an >®Fe nucleus in a collapsing stellar core at a

temperature T=1 MeV ?

First, we need the kinetic Fermi energy for the “seas” of both neutrons and protons in the nucleus — approximate
these seas as non-interacting fermions at symmetric nuclear matter density. The radius of nuclei is given by

R=r, A3, where the nuclear mass number is A, and r,= 1.07 fm. The number of particles per unit volume is
relatively independent of the size of the nucleus because of the saturation of nuclear forces:

A 3 3

v 4y
Each momentum state has a degeneracy (weight) factor of 4 (neutrons, protons, spin up, spin down),
so modeling as a zero temperature non-relativistic degenerate Fermi gas we get an expression for the Fermi momentum:

~ 1.95 x 10%® particles per cm

2

A 2 4 - —1 ~_ Pr _
; b S w2 T 72 1MeV 0.1
entro er parvon ~ — ) — — X U.
by P YO Nk~ 2 & 2 20MeV



fermions . . Maxwell-Boltzmann Limit - non-relativistic kinematics, non-degenerate

2 and non — degenerate (dilute) /i <0

3/2 00
_\/§ng / . /T / deq 63/2 o—ca/T
0

non — relativistic T'<< mc

Qup = 11\14I]I31 (QrD NR) — =

2aV 3/275/2 B 00
_ _\/_g m2 _eu/T / x3/2 e~ dp
37T 0

/Ooox”e—mda::r(nJrl):nF(n) and F(g):gp(g)zzr<%):zﬁ

= Qup=—gV T°?. <ﬁ>3/2 eI
2T

N 0N}

number density N = — =

=5 :gTs/z.(m>3/2 T

2

Vv, T

which we can re-arrange to get the kinetic chemical potential in terms of the number density,
mass of particle, temperature, and statistical weight:

3/2

2
i=T In <_7T) n
m T g



We can shed some light on the chemical potential in the MB limit and flesh out its physical
dependence on the underlying arrangement of matter and associated degrees of freedom.
First start by putting in the dimensions (and leaving T and m inside the log in energy units!):

2m)*? n(he)®

[L == ka In
9  (mT)*?
. . . . 1
Now define a measure of the inter-particle spacingas A = /3
hc
and the particle Compton wavelength as >\comp = E

Now we can re-express the kinetic chemical potential in this limit as

~ (27‘)3/2 )\comp ’ m 3/2
- l g (_Z)
= kpT In 3

The Compton wavelength is a measure of the quantum mechanical “size” of the particle and we see
that as the inter-particle spacing becomes smaller than this, or as the temperature gets very, very low,
we will be in danger of driving the kinetic chemical potential positive, i.e., invalidating our assumed “dilute” limit.



The entropy in the Maxwell-Boltzmann limit is 5 ot}

kp  OT
= entro er particle 5 _ § E _ § In T\*? g
Py PEED Nkw 2 T 2 o ) n

Example: contribution of a given species to the entropy per baryon

. L. Ny o N;
if number densities are, e.g.,for baryons n, = — and for species i, n; = VZ’

then the contribution of species i, with abundance relative to baryons Y;, to the entropy per baryon is

S __ 8 _mi( S N\N_y (.S
kab_nkab_nb Nikb o Nikb

Example: What is the entropy per baryon of the air in this room? In the center of the sun?



Example: Nuclear Saha Equation

For temperatures in excess of T, > 3 the rates of the nuclear reactions that build-up and tear-down a nucleus

with mass number A=Z+N (here with Z=number of protons, N=number of neutrons) can become very large
compared with material expansion/collapse rates and equal to each other, so that there is a steady state equilibrium
abundance of nucleus A(Z N). This steady state condition is deemed Nuclear Statistical Equilibrium or NSE.

The beauty of equilibrium is that the details of the reaction sequences involved are unimportant and we can just
summarize the net reaction sequence as, in this case,

Zp+ Nn=A(Z,N)+~

From which we can derive the Saha equation relating the chemical potentials of these species
(photons have zero chemical potential):

Z:up"_N,un:UA

These are total chemical potentials and we can convert this equation to one using the kinetic chemical potentials
by subtracting the rest masses of the various nuclear species involved:

pp = flp + My tn = Hn + My HA = [ta + ma

mmm) Zip+ Nim=jia—Q(Z,N)

With the binding energy for nucleus A=Z+N defined as —Q(Z,N)=—Zmp — Nmy +my
(i.e., very tightly bound nuclei correspond to large positive Q-values)



Example: nuclear Saha equation ... continued . . .

Using the dilute Maxwell-Boltzmann limit expressions for the kinetic chemical potentials for
free protons, free neutrons, and bound nucleus with mass number A, the Saha equation becomes

(7)o ) [l (F) s ) o[ (5) 5 ()
T) 37 \y T miV \g T) i \G(ZA)

Where the number densities of protons, neutrons, and nucleus with mass number A, respectively, are 7p, T, N A

Q
| | — =
n + In T

and where the spin degeneracies (weights) for protons and neutrons are g=2 while the
nuclear partition function at temperature T for the nucleus with mass number A=Z+N is

G(Z,A) = Z (2J; +1) e BT which is just the statistical weight for the nucleus with energy levels E; and spins J,

7

This version of the Saha equation can be re-arranged to give the number density of the nucleus A(Z,N)

na=G(Z,A) [T] [mgqu\’] 54 M Mn €XP (—i—?>

We can put dimensions in this simply by adding the appropriate powers of f -

5(A-1) 3
o (he)” ma 121 , Q
na :G(Z,A) T [W 2—Anp TLn exp —|—f



Example: nuclear Saha equation . . . continued . . .

We can, in turn, re-express this as a mass fraction for nucleus A(Z,N)
5/2 —10 (A1) zZ N
A5/2 11.013 x 10719 (Xp) (Xn) <+11.605 Q (2, N)>
—= — exp
T93/2 Ap An TQ

X(Z,N) ~ G (Z,4)

where the number densities for free protons, free neutrons, and nucleus A(Z,N) are related to the
corresponding mass fractions by

X (Z,N)

Ny =pNaXp, npn=pNaX,, na=pNa 1

where p is density in gcm™> and Avogadro’s number is Na ~ 6.022 x 102

and the nucleon masses in terms of atomic mass units M, are mp, = A, M,, my = A, M,,
with A, ~ 1.007825 and A, ~ 1.00866 and where M, ~ 931.494 MeV

Neglecting atomic electron binding energies, the nuclear Q-values are (in MeV)

Q(Z,N)~8.07T14N +7.2890 Z — A (Z,N)

where A(Z,N) is the appropriate atomic mass excess in MeV



Example: nuclear Saha equation ... continued . . .

There is yet another way to write the nuclear Saha equation that gives insight into what it means.
First, define the baryon-to-photon ratio, a parameter familiar from cosmology which, unfortunately,

has the same symbol as the one we have been using for degeneracy parameter. We will have to pay attention
to context here!

n 3
baryon — to — photon ratio n = ~> where the photon number density is n, = g, C(z) T3 and gy =2
Ny s

Using these and approximating non-exponential mass factors, we can write

34-5 A-1 _1za) s T 3041 A-1 yvZ N Q
X (Z,N) ~ G (Z, A) [2 = (@3 s }A —— A XZ XN e (%

where M, is a representative free nucleon mass and, e.qg., ma ~ A My

In radiation-dominated conditions the entropy per baryon, s, and the baryon-to-photon ratio will be
inversely proportional in regimes where statistical weights, g, are not changing,

= [wtw) o

with the net result that in these environments the NSE mass fraction for nucleus A=Z+N will be proportional to

the product of the 1-A power of the entropy-per-baryon and the exponential of the nuclear binding energy
to temperature ratio

X (Z,N)xG(Z,A) s XZ XY exp (%)



Example: nuclear Saha equation ... continued . . .

Repeating the result from the last page .. X (Z,N) x G (Z, A) st=4 XpZ XN exp (%)

Therefore, in NSE the abundance of a nucleus is mostly determined by a fight between binding and disorder,
with some dependence on the ratio of neutrons to protons.

In high entropy (i.e., highly disordered) environments, the factor s will be very small for a big nucleus (large A),
but this nucleus could be tightly bound, so that the exponential term could be large, depending on the temperature.

It is clear what is going on physically. Forcing A=Z+N nucleons to move around as a unit reduces the
translational degrees of freedom in the system from 3A to 3, so that big nuclei are inherently ordered states and,
therefore, disfavored when the entropy is high and favored when it is low.

Another way to view this result is to invoke Le Chatelier’s principle and remember the original cartoon
reaction sequence for NSE

Zp+Nn=A(Z,N)+~

Here it is clear that if we increase the photon number density (i.e., increase the entropy in radiation-dominated
conditions) we will drive the reaction balance to the left, favoring free nucleons and dismantling nuclei.

Problem: NSE obtains in the early universe when the temperature is T=1 MeV. Is there any °°Fe around?

The mass excess A (in MeV) for *®Fe can be found in the Table of Isotopes and this, combined with the formula for

nuclear Q-values given above, implies A (°°Fe) ~ —60.6041 = Q = 492.2601 MeV

and note that the term in the Saha equation for disorder, assuming WMAP entropy per baryon in units of k,, s=5.8945X10° is

492.2601 MeV

(1-56) - . . ..
(5.8945 x 10”) ~4.22 x 107  and this easily beats the binding term exp ( B
(§

)z61x1ww

Answer: not much iron around!



Example:

Big nuclei at high temperature,
but low entropy,
in a collapsing stellar core



Schematic ““Nucleus’ in Thermal Bath

(ignore Coulomb potential for protons)

Finite Tedipeo diemperatencited states

Excited States: excitation of particles above the Fermi surface, leaving holes below

o: @ @ ~101\T4ev
....... Q. . T SrVeoeel ...

tr OO0 0000
0000 0000
0000 0000
0000 0000 n =¢-V,
0000 0000 P

0000 0000 eV
0000 0000 Un=Er=Vo
0000 0000
0000 0000

PROTONS NEUTRONS




Nuclear Level Density

Bethe formula:

The level density for most all systems is exponential with excitation
energy E above the ground state. Nuclei are no exception. A fit to experimental
nuclear level data gives ...

and where the back-shifting parameter is o

/l nuclear mass number
A
S MeV

and the level density parameter is 4 ~



Number of nucleons excited above the Fermi surface
N ~al

nucleons

where the level density parmeter is a = % MeV!

Each nucleon so excited has an excitation ~ 7T

so that the mean excitation energy of the nucleus is
(E)~aT’

For example, at a temperature 7 =2 MeV,
a nucleus with mass number A ~ 200,
which is typical during the late satges of infall/collapse,

will have mean excitation energy

200
8 MeV

(EY~aT* =~ (2 MeV)’ =100 MeV



