

Exploring Hot Dense Matter at RHIC and LHC

Peter Jacobs Lawrence Berkeley National Laboratory

Lecture 4: Jets and jet quenching

Hot Matter at RHIC and LHC - Lecture 4

QCD: running of $\alpha_{\rm S}$

Perturbative QCD factorization in hadronic collisions

Hot Matter at RHIC and LHC - Lecture 4

Jets at CDF/Tevatron

Good

with NLO pQCD

Jets in heavy ion collisions

Controlled "beams Final-state interact using controlle

→ tomographi

ntensity

r are calculable

luon Plasma

Jets in real heavy ion collisions

Jet quenching

Radiative energy loss in QCD (multiple soft scattering):

Plasma transport coefficient:

$$\hat{q} = \frac{\langle \text{(momentum transfer)}^2 \rangle}{\text{mean free path}} = \frac{\mu^2}{\lambda}$$

Total medium-induced energy loss:

$$\Delta E_{med} \sim \alpha_s \hat{q} L^2$$

Leading hadron as a jet surrogate

6/23/11

Hot Matter at RHIC and LHC - Lecture 4

10

Jet quenching: RHIC vs LHC

RHIC/LHC charged hadrons

•RHIC/LHC: Qualitatively similar, quantitatively different
•Where comparable, LHC quenching is larger
→higher color charge density

LHC jet quenching: comparison to pQCD-based models

• Main variation amongst models:

implementations of radiative and elastic energy loss

• Models calibrated at RHIC, scaled to LHC via multiplicity growth

Key prediction: $p_{T}\text{-dependence of }R_{AA}$ ($\Delta E\sim log\left(E\right)$) - OK

•Qualitatively: pQCD-based energy loss picture consistent with measurements •We can now refine the details towards a quantitative description

Di-hadron correlations as a jet surrogate

STAR, Phys Rev Lett 90, 082302

Jet quenching II: di-hadrons

- Recoiling jet is strongly altered by medium
- Clear evidence for presence of very high density matter

Di-hadron correlations at high-pt

QCD analysis of jet quenching

Model calculation: ASW quenching weights, detailed geometry Simultaneous fit to data.

~Self-consistent fit of independent observables
Data have good precision: limitation is accuracy of the theory

Jet quenching: pQCD vs AdS/CFT

Weak-coupling pQCD (Baier et al.):

$$\hat{q}_{pQCD} = \frac{8\varsigma(3)}{\pi} \alpha_s^2 N_{color}^2 T^3 \sim 0.94 \frac{GeV^2}{fm} \text{ at } T = 300 \text{ MeV}$$
Proportional to N_C² ~ entropy density
Strong-coupling N=4 SYM (Liu, Rajagopal and Wiedemann):
$$\hat{q}_{AdS/CFT} = \frac{\pi^{\frac{3}{2}} \Gamma(\frac{3}{4})}{\Gamma(\frac{5}{4})} \left(\alpha_{SYM} N_{color} T^3 + 4.5 \frac{GeV^2}{fm} \text{ at } T = 300 \text{ MeV} \right)$$
NOT proportional to N_C² ~ entropy density
Roughly $\hat{q}_{data} \sim 1 - 5 \ GeV/fm^2$

Full jet reconstruction

Jet quenching is a **partonic** process: can we study it at the partonic level?

Jet reconstruction: capture the entire spray of hadrons to reconstruct the kinematics of the parent quark or gluon

Jet measurements in practice: experiment and theory

colinear safety:

finite seed threshold misses jet on left?

Fermilab Run II jet physics hep-ex/0005012

infrared safety: one or two jets?

Algorithmic requirements:

- same jets at parton/particle/detector levels
- independence of algorithmic details (ordering of seeds etc)

Modern jet reconstruction algorithms

- Cone algorithms
 - Mid Point Cone (merging + splitting)
 - SISCone (seedless, infr-red safe)
- Sequential recombination algorithms
 - k_T
 - anti-k_T
 - Cambridge/ Aachen
- Algorithms differ in recombination metric:
 - → different ordering of recombination
 - → different event background sensitivities

Modern implementation: FastJet (M. Cacciari, G. Salam, G. Soyez JHEP 0804:005 (2008))

Jets at CDF/Tevatron

Good

with NLO pQCD

Multiple algorithms give consistent results

0.1<IY^{JET}I<0.7

NLO: JETRAD CTEQ6.1M

 $\mu_R = \mu_F = \max P_T^{JET} / 2 = \mu_0$

corrected to hadron level

500

600

700

[GeV/c]

400

Systematic errors

Jet measurements over large background

Inclusive jet cross sections at $\sqrt{s}=200 \text{ GeV}$

M. Ploskon QM09

Inclusive cross-section ratio: p+p R=0.2/R=0.4

compare within same dataset: systematically better controlled than R_{AA}

Narrowing of the jet structure with increasing jet energy

Inclusive cross-section ratio in p+p: compare to NLO pQCD

Jet hadronization

Hadronization effects: HERWIG vs. PYTHIA

Different hadronization models generate closely similar ratios

$\sigma(R=0.2)/\sigma(R=0.4)$: NNLO calculation

G. Soyez, private communication

Broadening due to combined effects of higher order corrections and hadronization

Incl. cross-section ratio: Au+Au R=0.2/R=0.4

Marked suppression of ratio relative to p+p → medium-induced jet broadening

Incl. cross-section ratio Au+Au: compare to NLO

Stronger broadening in measurement than NLO ...work in progress for both experiment and theory...

Jets at LHC

Hot Matter at RHIC and LHC - Lecture 4

2

33

Dijet Asymmetry

- Dijet selection:
 - | η^{Jet}| < 2
 - Leading jet p_{T,1} > 120GeV/c
 - Subleading jet p_{T,2}> 50GeV/c
 - $\Delta \phi_{1,2} > 2\pi/3$

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Removes uncertainties in overall jet energy scale

Jet 1, pt: 70.0 GeV

LHC Pb+Pb: Dijet energy imbalance

Large energy asymmetry in central collisions: seen by CMS and ATLAS

Purely calorimetric measurement:

significant (unknown?) systematic uncertainties due to cutoffs and non-linearities for low p_T hadrons

 \rightarrow connection to jet quenching?

Recall the summary of Lecture 1: scorecard

What is the nature of QCD Matter at finite temperature?

- What is its phase structure?
- What is its equation of state?
- What are its effective degrees of freedom?

• Is it a (trivial) gas of non-interacting quarks and gluons, or a fluid of interacting quasi-particles?

- What are its symmetries?
- Is it correctly described by Lattice QCD or does it require new approaches, and why?

What are the dynamics of QCD matter at finite temperature?

- What is the order of the (de-)confinement transition?
- How is chiral symmetry restored at high T, and how?
- Is there a QCD critical point?
- What are its transport properties?

Can QCD matter be related to other physical systems?

Can we study hot QCD matter experimentally?

Red=progress Blue=interesting ideas Black=still thinking