

Correlations for Jet Probes of Quark-Gluon Plasma

(some) RHIC Discoveries

• Strongly interacting medium with partonic degrees of freedom

- Strong collective flow
- Constituent number scaling

• Jet quenching

- "Missing" high-p_T hadrons
- Novel "landscape" in hadron correlatic

Elliptic Flow

Fourier expansion for angular distributions:

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n\Delta\varphi)\right)$$

 v_2 - elliptic flow

Initial state spatial anisotropy
 → Pressure gradient anisotropy
 → Final state momentum anisotropy

Elliptic flow is developed at early stage

Perfect Fluid

Note: strange, multi-strange, charm hadrons -- flow!

v₂(p_t) and mass dependence - best described by ideal hydrodynamics! Ideal hydro → "Perfect" liquid:

equilibrium, zero mean free path, low viscosity

Partonic Degrees of Freedom

Pressure gradients converting work into kinetic energy $KE_T = m(\gamma_T - 1) = m_T - m$

v2 appears to scale with the number of

Quark coalescence

Hard Probes for QGP

Strongly-interacting perfect fluid with partonic degrees of freedom

ts)!

Hard Probes

"Hard" == large scale \rightarrow suitable for perturbative QCD

high momentum transfer Q² high transverse momentum p_T high mass m

perturbative

− Hard probes = PDF ⊗ pQCD ⊗ FF

non-perturbative

non-perturbative

Assumptions:

NNPSS 2011

Factorization assumed between the perturbative and non-perturbative parts Universal fragmentation and parton distribution functions

Medium properties via jets

Jet Tomography: calibrated (?) probes What happens if partons traverse a high energy density colored medium? Energy loss mechanisms Path length effects → non-trivial:

- Flavor/color-charge dependence of parton-medium coupling
- In-medium fragmentation/ hadronization

→Hard probes!

Define "hard"

In pp: inclusive cross-section is dominated by jet production above ~4 GeV/c

What about RHIC/LHC matter? Probably, > 6GeV/cNNPSS 2011(but soft part cannot be dropped)

QGP101-Jets are quenched

Nuclear Modification Factors

$$R_{AA} = \frac{\text{Yield}_{AA} / \langle N_{\text{binary}} \rangle_{AA}}{\text{Yield}_{pp}}$$

- Jet quenching evident in strong suppression of high p_T hadrons
- Multiple models provide a successful descriptions of the suppression levels
- Most include radiative and collisional energy loss

Jets are quenched! How?

More differential measurements:

- Angular di- and multi-hadron correlations
- Reconstructed jets
- Jet-jet, jet-hadron correlations

Outline:

- Early di-hadron correlation results
- Landscape details: "peaks", "humps" and "ridges"
- Multi-particle correlations

• • HI collisions: the environment

Jet event in Au+Au?

Data:

High multiplicities → background levels → new techniques for jet studies

Physics: Strongly-interacting partonic medium

 \rightarrow modified jets

Jets via angular correlations

Jet produces high p_T particles \rightarrow Select a high p_T particle to locate jet, look for correlated hadrons.

Measure reference, look for changes:

- Correlation strength
- Correlated shapes
- Associated spectral distributions

A fly in the ointment – "backgrounds":

But...

many processes would lead to some sort of angular correlations

Signal decomposition

Triggered di-hadron correlations:

NNPSS 2011

Azimuthal pair distribution per trigger: $C(\Delta \phi) = \frac{1}{N_{\text{total}}} - \frac{1}{\epsilon} \int d\phi$

$$C(\Delta\phi) = \frac{1}{N_{trigger}} \frac{1}{\epsilon} \int d\Delta\eta N(\Delta\phi, \Delta\eta)$$

Two-component model: all hadrons come from
jet fragmentation + "soft" processes

$$C(\Delta \varphi) = C^{pp} + B(1 + 2\langle v_2^T v_2^A \rangle \cos(2\Delta \varphi))$$

common partonic pairs from all other sources
hard-scattering
In two-component approach one needs to know only B, and $v_2(p_T)$ and
assume $\langle v_2^T v_2^A \rangle \approx \langle v_2^T \rangle \langle v_2^A \rangle$

• Recovering the away side:

- Away-side yield suppression
- Little modification of the Near-side yields
- No broadening on Near- or Away-sides

High-p_T – vacuum fragmentation?

STAR PRL 97 (2006) 162301

$$D^{h_{1}h_{2}}\left(z_{T}, p_{T}^{trig}\right) = p_{T}^{trig} \frac{d\sigma_{AA}^{h_{1}h_{2}}/dp_{T}^{trig}dp_{T}}{d\sigma_{AA}^{h_{1}}/dp_{T}^{trig}}$$
$$z_{T} \equiv \frac{p_{T}^{assoc}}{p_{T}^{trig}}$$

• Near-side:

- No dependence on z_T in the measured range – no modification
- Away side:
 - Suppression ~ level of R_{AA}
 - No dependence on z_T in the measured range no modification

Di-jets through correlations

Use back-to-back (correlated) trigger pairs to pick both sides of a di-jet

"2+1" correlations:

Trig1 - highest p_T in event, 5-10 GeV/c Trig2 - back-to-back with Trig1 $p_T > 4$ GeV/c Associated particles $p_T > 1.5$ GeV/c

• No evidence of medium modifications

Di-jets observed - all tangential?

• • Jet modifications: $p_T \downarrow$

o One high- p_T , one low- p_T trigger

- Reappearance of the away-side jet
- Double-hump structure hints at additional physics phenomena

Are these features "real", e.g. jet-related?

3-particle $\Delta\phi$ - $\Delta\phi$ correlations

Experimental observations consistent with

• jet deflection

NNPSS 2011

• conical emission (Constrains the speed of sound:

 $\theta_M = 1.37 \pm 0.02 \pm 0.06 \rightarrow c_s \sim 0.2)$ Closing the chapter?

Same-side excess yield

NNPSS 2011

• Excess yield on the same-side

- Is it related to energy loss?
- Correlated with same-side excess?

 \rightarrow Zooming in on the same side₂₇

RHIC Signature Result: the Ridge

#entries

• Near-side correlation structure:

- Central Au+Au: cone-like + ridge-like
- Ridge correlated with jet direction
- Approximately independent of $\Delta \eta$ and trigger p_T

Ridge in pair correlations

Long-range near-side correlation in inclusive events *NNPSS 2011*

Transverse momentum scan

<u>Z</u>oom in on jets: follow p_T evolution

Unlike-charge-sign pairs from 10% most central 200° GeV Cu+Cu data $I = \frac{1}{2} + \frac{$

3-particle correlation in $\Delta\eta$

T : Trigger particle A1: First Associated particle A2: Second Associated particle

 $\Delta \eta_1 = \eta_{A1} - \eta_T$ $\Delta \eta_2 = \eta_{A2} - \eta_T$

• The ridge is uniform in every event *NNPSS 2011*

Medium response = Energy loss?

"Lumpy" initial conditions in individual events, breaks the symmetry NEXSPHERIO Hydrodynamics

35

• • • Summary:

- Hard probes are essential for understanding of QGP properties
- Angular correlations are powerful experimental tools for such studies Low p_T

High p_{T}

Disappearance of away-side peak in central Au+Au, but not in d+Au

- jet quenching discovery
- establishing "final" state effect

Re-emerging of di-jet signal at higher p_T

- punch through ?
- tangential jets?

Away-side double-hump structure -

- ▶ mach cone ?
- deflected jets ?
- medium response/medium?

Near-side ridge -

- manifestation of energy loss?
- medium response/medium ?

How to control biases?

How to decompose observed structures?

• • • Why QGP?

To test and understand QCD: Strong interaction,

Confinement,

Mass,

Chiral symmetry.

Few microseconds after the Big Bang the entire Universe was in a QGP state.

 $QGP \equiv$ a thermally equilibrated deconfined quarks and gluons, where color degrees of freedom become manifest over nuclear, rather than nucleonic, volumes.

How to create Quark Gluon Plasma?

Making a Big Bang

to create Quark Gluon Plasma (QGP) – a deconfined state of quarks and gluons

Ollision Centrality

N_{part} = # of participant nucleons N_{bin} = # of binary collisions

(Estimated by Glauber Model)

PHENIX

PRC 78, 014901 (2008)

What is same-side ridge?

Ridge in high multiplicity p+p at LHC!

- Jet modified medium?
 - Ridge p_T-spectra and particle ratios are 'bulk-like'
 - Ridge diminishes(?) with p_T^{trig}

How is it related to jets?

• No evidence of medium modifications

Di-jets observed - all tangential?

PID-dependent correlations π^{\pm} trigger **STAR Preliminary** • Large jet-like cone, small 0.4 <mark>d²N</mark> N_Td∆∳ d∆ղ 0.3 ridge from pion triggers 0.2-0.1 0--0.1[.] 1.5 1 0.5 0 -0.5 Δ_n -1 -1.5 -1 Δ¢ $(P^{\pm}+K^{\pm})$ trigger **STAR Preliminary** 0.4 Smaller cone, large ridge <mark>d²N</mark> N_Td∆∳ d∆ղ 0 0.3 from P+K triggers 0.2--0.1[.] 1.5 1 0.5 0 -0.5

-1 ~~ -1.5

-1

ΔØ

 $4 < p_{T,trigger} < 6 \ GeV/c$

 $p_{t,assoc.} > 1.5 \text{ GeV/c}$

Au+Au

Projections – Au+Au

- Consistent with previous results but that is a function of projection range!
- Does not reveal entire structure

- Δη reveals rich trigger PID dependent structure:
 - Higher jet-like amplitude for pions
 - Ridge predominantly contributed by nonpion-triggered events

Raw PID Correlations

Before background subtraction

- Large $\Delta \eta$: Ridge difference evident in raw correlations.
- Not reconcilable with **symmetric** backgrounds.

• Full $\Delta\eta$ range: Difference in **awayside** structures.

