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Lecture 2 outline

1) Recap/questions from Lecture 1
2) low-energy effective theories (general)
3) chiral EFT for NN and NNN interactions

4) many-body interactions in flow equation



Questions to think about

1) What do | mean when | say that the form of low energy
effective theories are “universal” or model-independent ?
(Think of the multipole expansion example)

2) Why do RG transformations only affect short-distance
pieces of the Hamiltonian? Would you be alarmed if it modified
long-distance pieces?

3) Last time we saw that using the RG to lower the cutoff
in the nuclear Hamiltonian gives a much “softer” problem
that is amenable to perturbative treatments.

However, we learned that this transformation “induces” 3-body
(and higher) forces. What then, have we gained? Have we
really simplified anything at all?



Principle of Low-Energy Effective Theories
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@ If a system is probed at low energies, fine details not resolved

e.g., proton EM form factor F'(Q) ~ 1 for Q) << 800 MeV



Principle of Low-Energy Effective Theories
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@ If a system is probed at low energies, fine details not resolved
@ Use convenient dof to describe low-energy processes
@ Complicated short-distance structure replaced by
something simpler without distorting low-E observables
@ Systematically achieved by effective field theories (EFT)



Example: Multipole expansion in E&M

observer

Underlying theory:
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Example: Multipole expansion in E&M

;= / Pror) p— / Prrp(r) , ete.

Y

CL Y1’ . ” 1
€ “Universal form” (same for all localized

Underlying p replaced by charge distributions) given by symmetry

intlik Itipol -
pointiike mullipoles Q Details of p(r) encoded a few numbers (q,p, Qi)

that can be calculated from “underlying” theory
or extracted from experiment if p(r) unknown.
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Low energy effective theories (QM)

Underlying theory

with cutoff A«
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physics (e.g. physics with
1n-exchange) some scale M 0

with some scale

My (e.g., p,m-exchange)



Low energy effective theories (QM)

Aw
Underlying theory
with cutoff A / LY M
S
A
known
1ong-.distance short-distance Ve
physics (e.g. physics with
I7-exchange) some scale Ms 0

with some scale

My (e.g., p,m-exchange)

Now suppose we want an low E effective theory that describes
physics up to some M < A < Ms.



Low energy effective theories (QM)

Ao
Underlying theory
with cutoff A« / L Vs M
‘ S
A
known
1ong-.distance short-distance Ve
physics (e.g. physics with
1n-exchange) some scale M 0

with some scale

My (e.g., p,m-exchange)

Our task 1s to “integrate out” states above A using the RG

Generic form of B
the effective theory Verp = Vi +0Ver (M)
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Low energy effective theories (QM)

Ao
Underlying theory
with cutoff A« / L Vs M
S
A
known
10ng-.distance short-distance Ve
physics (e.g. physics with
ln-exchange) some scale M 0

with some scale

M; (e.g., p,w-exchange)

Our task 1s to “integrate out” states above A using the RG

Generic form of B
the effective theory Verp = Vi +0Ver (M)

0Vee = Co(A)5>(r) + Co(A) V263 (r) + - -
encodes the / /

effects of integrated universal form; depends
dof on low-E physics only on symmetries 11



0.25 T | T T T
:\ i
L \\ 3 _
- S, deuteron probability density -
02k \ |
Lot i
m; 0.15 B —— Argonne v _
= = A=40fm’| |

a -1
= 5 © A=30fm | A
Ey - A=20fm’| ]
005 -
0f ' _

0 2 4 6

r [fm]

Evidence that

- main effect of RG evolution is a constant shift (delta function!)
- tail of deuteron wf doesn’t change

o0

Vi (KK) [fm]

T I T l T
| symbols: Viewk A =2 fm™

- T ..
-~ -
-—

—-_——t .

—

--- Bonn A
------ Argonne vi18 | |
-—-— |daho A

— CD Bonn
-—- Nijmegen94 |

—— Nijmegen94 |

| !

1

Verr =V +0Ver (A)

2
K [fm™']

- consistent with collapse to “universal” interaction
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Low energy effective theories (QM)

Generic form of

— A
the effective theory Vess = Vi +0Ver (D)

6V = Co(N)6? (1) + Co(A)V26 () + - - -
encodes the / /

effects of integrated universal form; depends
dof on low-E physics only on symmetries

Like the multipole example, the complicated short-distance structure
of the “true” theory 1s encoded 1n a few numbers that can be
calculated from the the underlying theory

OR

1n cases where the short-distance structure 1s unknown or too
complicated, can be extracted from low E data

Effective Field Theory (EFT) 1s based on these ideas (see Lepage reference)
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Construction of nuclear potentials via chiral EFT
Weinberg, van Kolck, Epelbaum, Machleidt, ...

1) Identify the relevant degrees of freedom for the resolution scale of
nuclei (nucleons and pions)

2) Identify relevant symmetries of low-E QCD (spontaneously broken
chiral symmetry)

3) Write the most general Lagrangian consistent with the symmetries (infinite
number of interactions; non-normalizeable)

4) Design an organizational scheme that can distinguish between more or
less important contributions. (low-momentum expansion; power counting)

5) Calculate finite # of Feynman diagrams to the desired accuracy dictated
by the power counting.

Reviews:

Bedaque and van Kolck, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339, nucl-th/0205058.
Machleidt, arxiv:0704.0807.

Epelbaum, Hammer, MeiRner, Rev. Mod. Phys. 81, 1773 (2009); arXiv:0811.1338.
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1. ldentify relevant dof/separation of scales

Kinetic energy at Fermi surface: T = 80 MeV (Fermi momentum k; ~ 1.4 / fm)

Pion mass: m_= 140 MeV

Nucleon resonance (Delta excitation): E, = 300 MeV
Rho meson: m =770 MeV
Omega meson: m,= 780 MeV

Nucleon mass: my = 940 MeV

EFTs:
1. Pion-less EFT (low-density nuclear/neutron matter, few-body systems)

2. Chiral EFT (includes pions): High-momentum cutoff A ~ 500 ... 600 MeV/

3. Chiral EFT (includes pions and delta resonance) A ~ 500 ... 600 MeV/c
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2. Identify low E symmetries of QCD

@ Besides space-time symmetries and parity, what else?
@ Is SU(3) color gauge symmetry encoded in the EFT?
@ Consider chiral symmetry:

_ . _ . 1 _ _
Lqocp = q,1Dq. + qriDgr — §T1' G, G* —qgMaqL — q, MQr

D=@—igsGT?; T¢ = SU(3) Gell-Mann matrices

m, O :
M= ( 0 m, ) SU(2) quark mass matrix

gLr = %(1 +5)q , projection on left,right-handed quarks

@ m, and mgq are small compared to typical Hadrons

(~5and 9 MeV at 1 GeV renormalization scale versus about 1 GeV)

M ~ 0 = approximate SU(2), @ SU(2)g chiral symmetry




2. Identify low E symmetries of QCD

@ What happens if we have a symmetry of the Hamiltonian?
@ Could have a multiplet of ~ degenerate states (masses)
@ Could be a spontaneously broken (hidden) symmetry

@ Experimentally we notice:
@ Isospin multiplets like (p,n) or (X*, -, V), etc.
@ But we don’t find opposite parity partners for these states
with close to the same mass. Axial part spontaneously broken.

@ Pions are “pseudo Goldstone bosons.” Explicit symmetry breaking
of quark masses (u # d # 0) implies m; << Mqcp but non-zero.

Chiral symmetry relates states with different numbers of
pions and dictates that pion interactions get weak at low
energy — pion as long-distance dof in yEFT!
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3) Write down the most general Lagrangian consistent
with symmetries; hierarchy of terms => Power counting

Left — /:’71'7'(' + £7TN + ['NN

£0 — %‘“w-aﬁ‘w—%mﬁﬂJ%—Nf[ido%—zg—f‘ra Vr — 4}27'-(7r><7'r) N

™

- 1c:S(NTN)(NTN) - 1CT(NT0N)(N70N) +
C
M = Nfl4eim? -—m§ 2 4 f;“ 7% + f2(d7r )
Cy
- 2f2
D

- F(N’fN)(NfaTN) Vr — %E(NW)(N*TN) (NTTN) +

Ao Eijk €abe O'ITa(v/ Wb)(vk 770)] N

(Weinberg counting)

Infinite # of unknown parameters (LEC’s), but leads to
hierarchy of diagrams: v = —4 +2N + 2L+ ,(dj + ni/2 — 2)

>0

N = # external nucleons d; = # derivatives or m; at i vertex
L =# loops ni = # nucleons at i vertex
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5) Calculate to the desired order

@ LO time-ordered diagrams

g—'_“r&'-ﬁw
P Gl k --=<c-F- K " vertex Cr [/ Cs
A vertex
ga\2Ti T o1-qo2-(q .
Viz(q) = ( ) { > > +2nd dlagram} :
2f: 2w p p pi>  p3
P WA onehplon

[ 9A)? o1-qoz-q exchan
- (5)' %" ge

@ zero-range contact term at LO

‘VCZCs-}-CTOH-O’Q'

Q regularize (WHY?)

V(p’, p) — e—(P'//\)2" V(p” p)e—(P/A)Qn
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Chiral EFT for two-nucleon potential

@ Epelbaum, MeiB3ner, et al.
@ Also Entem, Machleidt
@ L.y + Mmatch at low energy
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Why the cutoff A?

€ Need to match unknown LECs to data (e.g., phaseshifts). Solve LS eqn:

2 T

T(k, k) = V(k, k) + = / q2dqv<";§) (3’ £) where tan (k) = —kT(k. k)
—q

€ NN loop integral UV divergent => regularization and renormalization

¢ details of cutoff (sharp, smooth, etc.) don’t matter to low E physics
¢ LECs now “run” with A

€ No such thing as “the” chiral potential of a given order. Infinitely many
regularization/renormalization schemes => any differences should be
higher order effects.

@ Truncation errors of observables go as O(F)

¢ “theoretical error bars” from varying A
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Error bands thru N3LO (Epelbaum et al., nucl-th/0509032)
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Question: Consider two high-precision NN potentials from
chiral EFT with different cutoffs. How will the solutions of the
nuclear many-body problem depend on the cutoff?

1.

There will be (almost) no cutoff dependence in the two-body
system.

There will be (almost) no cutoff dependence in many-body
systems as Nature must be cutoff independent.

The cutoff dependence measures missing contributions from
higher orders.

The cutoff dependence measures missing short-range
contributions from higher orders.
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Question: Consider two high-precision NN potentials from
chiral EFT with different cutoffs. How will the solutions of the
nuclear many-body problem depend on the cutoff?

1.

There will be (almost) no cutoff dependence in the two-body
system.

There will be (almost) no cutoff dependence in many-body
systems as Nature must be cutoff independent.

The cutoff dependence measures missing contributions from
higher orders.

The cutoff dependence measures missing short-range
contributions from higher orders.

Answers 1 and 4 are correct.
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Three-body force

From Wikipedia, the free encyclopedia

A three-body force is a force that does not exist in a system of
two objects but appears in a three-body system. In general, if the
behaviour of a system of more than two objects cannot be
described by the two-body interactions between all possible
pairs, as a first approximation, the deviation i1s mainly due to a

three-body force.

Tidal Bulges from Moon and Sun _ o
jealousy is like a 3-body force

p
vioon
Orbital Paths
of Earth and
Sun Moon



Evidence for 3N in light nuclei: overall binding & level ordering
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Eliminating DOF leads to 3-body forces

@ integrating out non-nucleonic DOF and/or high-momentum states
renormalizes the strength of 3N (and higher) interactions.

Q artificial to speak of “true” 3N and “induced” 3N forces!

Leading three-nucleon force

1. Long-ranged two-pion term (Fujita & Miza ...)
2. Intermediate-ranged one-poin term

3. Short-ranged three-nucleon contact

The question is not: Do three-body forces enter the description?
The (only) question is: How large are three-body forces?
And at what resolution scale? 97



A theorem for three-body Hamiltonians
Polyzou and Gléckle, Few Body Systems 9, 97 (1990)

Different two-body Hamiltonians can be made to fit two-body and three-body data by

including a 3NF into one of the Hamiltonians.

Theorem. et
H;= H, + H; + V and ”,, ~H + H+ 170 (1.1)

be two-body Hamiltonians with the same binding energies and scattering matrices
for each pair of particles i and j. Assume that the two-body Hamiltonians are
asymptorically complete and that the unitary transformations relating these two-body
Hamiltonians, which necessarily exisi, have bounded Cayley transforms. Then there
exists a three-body interaction, W, such that the two three-body Hamiltonians

H=H +Hy+ Hy+ Vs + Vay 4 Vy, (1.2)
and

H=H+W (1.3)
with

HeH + Hy+ Hy 4 Vi3 + Vay + Wy, (1.4)

have the same binding energles and scattering marrix.

Corollary. Under the assumptions of the thearem, if ¥, ,y, is a three-body interaction
then there exists another three-body imteraction V,, , , such that

H=H,+ Hy + Hy + Vi3 4 Vag + Vi, + Vyayy
and

HwH + Hy & Hy 4 Viy + Vog + Vyy # Vyay
have the same binding energles and scatiering matrix.

Implications: (1) There are no experiments measuring only three-body binding energies and phase
shilts that can determine if there are no three-body forces in a three-body system.
The question makes no sense. The correct statement is that there may be some
systems for which it is possible to find a representation in which three-body

forces are not needed.

(2) Different off-shell extensions of two-body forces can be equivalently realized as
three-body interactions.

(4) Three-body forces cannot be determined in a manner that is independent of the

two-body interaction.




Few-body forces from Chiral EFT

Separation of scales: low momenta Q << A, breakdown scale

NN

g

LO O (%{%) Y

NLO O (%) “ {

4N

Explains 2N > 3N > 4N

Formal Consistency
NN and NNN from same Lagrangian
nrt and N, electroweak
Broken chiral symmetry of QCD

Error estimates from A variation

Phase Shift [deg]

0 S0 100 150 200 250

E,_, [MeV]

Weinberg, van Kolck, Epelbaum, Meissner, Machleidt, ...

Ex [MeV]
(3%

> i
> SL1 -
S
% i, — ]

=
c 1
‘ﬁ" |
< -

+3N

INLO NALO Expl

from A. Nogga

29



Fitting 3NF LEC’s at N°LO [A. Nogga]

@ Fitting ¢4, c3, and ¢4 )x::‘.i {** *

Cq Cs Ca
NN phase shift analysis -0.76 -4.78 3.96
TN scattering (dispersion rel.) -0.81 -4.70 3.40 ~< Cie Ca C
TN scattering (directly) -1.23 -5.94 3.47 ’,:Ij bea
NN pert. 3F4 -0.81 -3.40 340
NN potential fit to data -081 -3.20 5.40

@ Significant uncertainties!

@ D appears in pion production from NN, but not analyzed
@ E requires a 3N observable

e Typically D and E fit together to triton binding energy and *He
binding energy or radius; or sometimes to 3-body energy and
scattering length
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No-Core Shell Model (NCSM) with 3NF

@ Nuclear structure results point to importance of 3NF

o Note '°B ground state
e Note spin-orbit splittings

L 6 11 L 071 12
18 2% B [ Y23 L 2%y 7 271
— 8 2.— 16-..— T — g "‘:]
‘. I . ) l H l _I ,- l
- '—" Il_z I/’.’:.‘f: : 4' — — ’
"’_ _ :‘ll — _l
2 :I —— . i -, [ —
! .4 . — 4 g3 . -l- v —
4 2 1 2. — L
—3 . L
™ . 2. _8 — 52
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) V2 e -+ -8
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- ’ * f— : 4 2 —_—
e, T g =
LI A 3° s Vi
l,:-_
—l _0 yz‘ !vl'zz_ —0 0? . L 00
- NN+NNN  Exp NN [ NN+NNN Exp NN - NN+NNN Exp NN

16 32:32 "
2. A2
12 -VZ. - —
i . e 7/2
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_5[:‘
L0 42, 1123
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[Navratil et al., (2007)]
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Extras
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|dea:

® ©

Green’s Function Monte Carlo

Determine accurate approximate wave function via variation of the
energy (The high-dimensional integrals are done via Monte Carlo
integration).

5 — Viriall | Wirial)
(Wtriall Wtrial)

Refine wave function and energy via projection with Green’s
function

W) = 7 oo e TH=E) |y i)

Virtually exact method.
Limited to certain forms of Hamiltonians; computationally

expensive method. (local potentials only)
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Working in a finite model space

NCSM and Coupled-cluster theory solve the Schroedinger equation in a
model space with a finite (albeit large) number of configurations or

basis states.

Problem: High-momentum components of high-precision NN
interactions require enormously large spaces.

Solution: Get rid of the high-
momentum modes via a
renormalization procedure. (Viow-k
is an example)

Price tag:
Generation of 3, 4, ..., A-body
forces unavoidable.
Observables other than the energy
also need to be transformed.

_1 g E 1 1 13 ! | 1 1 1 1 1 =
20F 4 «- bare :
-g; - }Ie "‘. 2 Vzeﬂ -
v 23- Idaho-A —— Vier -
E‘ -24r 'L V4eﬂ i
W 25+ ha=36 MeV ] .
.26 P T - &t~
27k ‘\’/"—G—- ~ =4 ,._:‘_,;_ ) s
-281 -
-29F , L ] 1 1 | 1 1 1 Bl
C 2 4 6 8 10 12 14 16 18
Nmax
E. Ormand

http://www.phy.ornl.gov/npss03/ormand2.ppt



No core shell model

|dea: Solve the A-body problem in a harmonic oscillator basis.
1. Take K single particle orbitals

2. Construct a basis of Slater determinants

3. Express Hamiltonian in this basis

4. Find low-lying states via diagonalization

Get eigenstates and energies
No restrictions regarding Hamiltonian

© ©

®  Number of configurations and resulting matrix very large: There
are

(K) _ K
A) = (K—A)Al

ways to distribute A nucleons over K single-particle orbitals.



Coupled Cluster (CC) Calculations (figures from G. Hagen)

e Size extensive, based on the Linked Cluster theorem
e Softer polynomial scaling with # of orbitals

® Extended to include 3NFs (Dean, Hagen, Papenbrock...)
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