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Quantum Manifestations of Classical Chaos —
Some Universal Features of Billiards and Nuclei

@ Classical billiards and quantum billiards

@ Random Matrix Theory (Wigner 1951 — Dyson 1962)

@ Spectral properties of billiards and mesoscopic systems

@ Microwave resonator as a model for the compound nucleus
S-Matrix fluctuations in the regime of overlapping resonances

Induced time-reversal symmetry breaking
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Classical Billiard




Regular and Chaotic Dynamics

Regular Bunimovich stadium (chaotic)

@ Energy and p; are conserved @ Only energy is conserved
@ Equations of motion are integrable @ Equations of motion are not integrable

@ Predictable for infinite long times @ Predictable for a finite time only



Tool: Poincaré Sections of Phase Space

@ Paramertization of billiard boindary: L conjugate

@ Momentum component along the boundary: sin(e) (el

sin(e)
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Small Changes — Large Actions

@ Sensitivity of the solutions of a deterministic problem with respect
to small changes in the initial conditions is called Deterministic Chaos

@ Beyond a fixed, for the system characteristic time becomes
every prediction impossible. The system behaves in such a way
as if not determined by physical laws but randomness




Our Main Interest

@ How are these properties of classical systems transformed into
corresponding quantum-mechanical systems ?
— Quantum chaos ?

@ What might we learn from generic features of billiards
and mesoscopic systems (hadrons, nuclei, atoms, molecules,
metal clusters, quantum dots) ?




The Quantum Billiard and its Simulation
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Schrodinger < Helmholtz

quantum billiard

2D microwave cavity: h, < A . /2

(A+Kk2)w =0 (A+K?)E, =0
k = % k:ﬁ
h C

Helmholtz equation and Schrodinger equation are equivalent in 2D. The
motion of the quantum particle in its potential can be simulated by
electromagnetic waves inside a two-dimensional microwave resonator.




Superconducting Niobium Microwave Resonator




Experimental Setup

Network Analyzer

Test Set [_o oy
RF—Source |

@ Superconducting cavities

a LHe (T =4.2K)

| @ f=45MHz ... 50 GHz
U @ 103...10% eigenfrequencies
VAX
@ Q=f/Af~ 106




Stadium Billiard & n + 232Th

Transmission spectrum for the stadium billiard
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Niels Bohr’s Model of the Compound Nucleus

The first of these iz intended to convey an idea of
events arising out of a gollision between o neutron

and the nuclous. Imagine a shallow basin_with a

number of hilliard balls in it as shown in the accom- - ""‘I od v
panying figure, If the basin were empty, then upon ti:u? 690,

striking a ball from the outside, it would go down ‘\
one slope and pass out on the opposite side with its

original veloecity. But with other balls in the basin, .
there would not be a free passage of this kind, The

struck ball would divide its energy first with one of

the balls in the basin, these two would similarly o=
share their energies with others, and so on until the \‘/
original kinetic energy was divided among all the

balls., If the basin and the balls are regarded as

perfectly smooth and elastic, the collisions would

continue until the kinetic energy happens again to _.
be concentrated upon a ball close to the edge. This

ball would then escape from the basin and the

remainder of the balls would be left with insufficient

total energy for any of them to elimb the slope.




Random Matrices & Level Schemes

Level Schemes
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Nearest Neighbor Spacings Distribution
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Poisson

@ GOE and GUE > "Level Repulsion”

@ Poissonian Random Numbers <« "Level Clustering”




Nearest Neighbor Spacings Distribution

stadium billiard nuclear data ensemble
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@ Universal (generic) behaviour of the two systems



Universality in Mesoscopic Systems:
Quantum Chaos in Hadrons

@ Combined data from measured baryon and meson mass
spectra up to 2.5 GeV (from PDG)

@ Spectra can be organized into multiplets characterized by a
set of definite quantum numbers: isospin, spin, parity,
strangeness, baryon number, ...

P(s)

1

0.8 |

0.6 |

0.4 |

0.2

Same ON s @ Scale: 10-% m

48 spacings

‘TN <S>=287MeV

- - Pascalutsa (2003)




Universality in Mesoscopic Systems:
Quantum Chaos in Atoms

@ 8 sets of atomic spectra of highly excited neutral and ionized
rare earth atoms combined into a data ensemble

@ States of same total angular momentum and parity
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Universality in Mesoscopic Systems:
Quantum Chaos in Molecules

@ Vibronic levels of NO,

@ States of same quantum numbers

@ Scale: 10°m

P (S)

Zimmermann et al. (1988)




Conjecture of Bohigas, Giannoni + Schmit (1984)

@ How is the behaviour of the classical system transferred
to the quantum system ?

@ Answer: There is a one-to-one correspondence between billiards and
mesoscopic systems on all scales

@ For chaotic systems, the spectral fluctuation properties of eigenvalues
coincide with the predictions of random-matrix theory (RMT) for matrices of
the same symmetry class

@ Numerous tests of various spectral properties (NNSD, X2, A,, ...)
and wave functions exist

@ Our aim: to test this conjecture in scattering systems, i.e. in open chaotic
microwave billiards particularly in the regime of weakly overlapping
resonances




Microwave Resonator as a Model
for the Compound Nucleus
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@ Microwave power is emitted into the resonator by antenna @
and the output signal is received by antenna @
— Open scattering system

@ The antennas act as single scattering channels

@ Absorption into the walls is modelled by additive channels

G. E. Mitchell, A. Richter and H. A. Weidenmdliller, arXiv:1001.2422v1 (2010)




Typical Transmission Spectrum
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@ Transmission measurements: relative power from antennaa — b
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Scattering Matrix Description

@ Scattering matrix for both scattering processes

8(E) =1 - 2ri WT (E1 D+ ix WWT)-1()

Compound-nucleus Microwave billiard
reactions

nuclear Hamiltonian & FI —> resonator Hamiltonian
coupling of quasi-bound . coupling of resonator
states to channel states «— W -

states to antenna states
and to the walls

@ Experiment: complex S-matrix elements
T-inv

GOE  matrix for systems
GUE T-noninv

@ RMT description: replace H by a



Resonance Parameters

@ Use eigenrepresentation of
H, =H—-izZWW’

and obtain for a scattering system with isolated resonances
a — resonator — b

NIN
Sba:5ba_iZ: e

f—f,+(/2T,

7,
f = real part A
@ Here: * > of eigenvalues of H
Fﬂ = imaginary part

@ Partial widths fluctuate and total widths also
Fua 2 rub F,U




Excitation Spectra

atomic nucleus

overlapping resonances
forT'/D > 1
Ericson fluctuations

isolated resonances
forT'/D << 1

p ~ exp(E"?)

@ Universal description of spectra and fluctuations:
Verbaarschot, Weidenmdller + Zirnbauer (1984)

microwave cavity
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Spectra and Correlation of S-Matrix Elements

Log(|S12]) (a.u.)

3.4 3.8 12.5

12.8

Frequency (GHz) ' Frequency (GHz)
@ Regime of isolated resonances @ Overlapping resonances
@ I'/D small @ I'/D~1
@ Resonances: eigenvalues @ Fluctuations: I'_,,

Correlation function:  C(&) = <S( f)ST(f + 5)> = <S (f )><S*( f+ £)>




Ericson’s Predictionforl > D

. ) ol ' 0135;9.%1532 ' ]
@ Ericson fluctuations (1960): I ! 0, -110°
2 (2%) 3t
2 F dn
‘C(g)‘ oc ——h au. |
1_‘Coh +& 1+ ’J
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@ Correlation function is Lorentzian

T T

Correlationfunction
c130p,a0)8%2 @ =170°

@ Measured 1964 for overlapping
compound nuclear resonances

— “_;—_:w'\_/
@ Now observed in lots of different - o -
systems: molecules, quantum dots, o 50 160 150 kel
laser cavities, microwave cavities, ... P.v. Brentano et al., PL 9 (1964) 48
@ Different theoretical approaches: Ericson — energy and time domain
VWZ — RMT

Bliumel & Smilansky — semiclassical approach

@ Applicable for ['/D >> 1 and for many open channels only



Fluctuations in a Fully Chaotic Cavity with T-Invariance

@ Tilted stadium (Primack + Smilansky, 1994)

@ GOE behaviour checked

@ Measure full complex S-matrix for two antennas: S.,, S,,, S,




Spectra of S-Matrix Elements in the Ericson Regime
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Distributions of S-Matrix Elements the Ericson Regime

P(z)
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Road to Analysis of the Measured Fluctuations

@ Problem: adjacent points in C(¢g) are correlated

@ Solution: FT of C(¢) — uncorrelated Fourier coefficients (~3(t)
Ericson (1965)

@ Development: Non Gaussian fit and test procedure




Autocorrelation Function and Fourier Coefficients
in the Ericson Regime
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Spectra of S-Matrix Elements in the Regime I'/D < 1
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Example: 8-9 GHz
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Distributions of S-Matrix Elements in the Regime I'/D < 1

1.0 - : : . . :
08 x3000 | | X500 T %3000 || x1500 |
~ 06| 5-6GHz
& 04| | i} i Al
02}t - L 1t 1
. x500 x200 " x1000 1. x500
= 06 9-10 GHz I il i [
& 04 i | .
02 | N it ]
0
R | 0 I | 0 1-1 0 1 -n 0 T
z=Re{S;} z=Im{S;} z=Re{S5} z=Arg{S;,}

@ Ericson regime: Re{S} and Im{S} should be Gaussian and phases
uniformly distributed

@ Clear deviations for ['/D < 1 which still need to be modeled theoretically




Fourier Transform vs. Autocorrelation Function

Time domain Frequency domain
Example 8-9 GHz

0.04

«— S12 - 0.02}

ri & 0.25 }'
_gﬁ «— 811 — W
O 0.5}

0.05

0.25 ¢

— —
822 0.15 |

0.05

0 400 800 0 2 4 6 8




Exact RMT Result for GOE Systems

@ Verbaarschot, Weidenmuller and Zirnbauer (VWZ) 1984 for arbitrary /D :

@ VWZ-integral: C = C(T, DK
o o' I
1 » AL =AM = A
Can(€) = Q[“”“l ij/“/\;’ .U/“/\““\“\“\” AR = S A e (0 F M) )2
xexp (—ime( + A +20)/D) e AeA) = Tl =) )
Al A &
X Jab(As A1, A2) - (1 R VR I W ’!},/\)
(1 ="T.\) -
XH } r,. } pu— 5 +(]-_-'_”uf.)[ ]f
e (L+TA)(1 4 TeAz)) Y2 A1+ A) o1+ Xy)

(1 +ToA ) (1 +TpAq) * (1 4+ TuA2) (1 + TpA2)
2A(

@ Rigorous test of VWZ: isolated resonances, i.e. [ << D

@ First test of VWZ in the intermediate regime, i.e. ['/D = 1, with high
statistical significance only achievable with microwave billiards

@ Note: nuclear cross section fluctuation experiments yield only |S|?



Corollary

@ Present work:
S-matrix = Fourier transform - decay time (indirectly measured)

@ Future work at NIF:
Direct measurement of the decay time of an excited nucleus might
become possible by exciting all nuclear resonances (or a subset of
them) simultaneously by a short laser pulse.




Search for TRSB in Nuclei: Ericson Regime

VoLuME 51, NUMBER 5 PHYSICAL REVIEW LETTERS I Aucust 1983

Improved Experimental Test of Detailed Balance and Time Reversibility
in the Reactions 2’ Al+p=2*Mg +a

E. Blanke,®’ H. Driller,” and W. Glockle
Abteilung fiiv Phvsik und Astvonomie, Ruhy Univevsitit Bochum, D-4630 Bochum, Geyrmany

and

H. Genz, A. Richter, and G. Schrieder
Institut fiiv Kevnphysik, Technische Hochschule Davmstadt, D-6100 Darmsiadt, Gevmany
(Received 25 April 1983)

A new test of the principle of detailed balance in the nuclear reactions “"Al(p o ,) Mg
and *Mg(a, p o)*'Al at bombarding energies 7.3 MeV<E, < 7.7 MeV and 10.1 MeV<E,
=10.5 MeV, respectively, is reported. Measured relative differential cross sections
agree within the experimental uncertainty A=+ 0.51% and hence are consistent with time-
reversal invariance. From this result an upper limit £ < 5x 10 (80% confidence) is de-
rived for a possible time-reversal—-noninvariant amplitude in the reaction.




Induced Time-Reversal Symmetry
Breaking (TRSB) in Billiards

@ T-symmetry breaking caused by a magnetized ferrite o

@ Ferrite features ferromagnetic resonance (FMR) a b

@ Coupling of microwaves to the FMR depends on the direction a+= b

\.a
/

V
'\

@ Principle of detailed baIance|S,_,‘,Jb|2 = |*S‘,g;,,._,‘,f|2

@ Principle of reciprocity: Sab = Sba



Violation of Reciprocity
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& Clear violation of reciprocity in the regime of I'/ D ~1




Analysis of Fluctuations with Crosscorrelation Function

Crosscorrelation function:

C(S12-$51,8) = (S, (1) S5, (f +2)) = (S, (F))(S,())

@ Determination of T-breaking strength from the data

@ Special interest in first coefficient (€ = 0)




Experimental Crosscorrelation Coefficients
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@ Data: TRSB is incomplete — mixed GOE/GUE system
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Exact RMT Result for Partial T Breaking

@ RMT analysis based on Pluha¥, Weidenmuller, Zuk, Lewenkopf and Wegner, 1995

Tuls /‘\(Im /'\llm /"E s (TlaTzarabsa » & 5)

Cule) = T
" 1 1 iTE o _')
exp = ) 19 2
(pr 4 py)? (g + p1o)? : D Wy +Ha + 2H) | |
X JI”;, . H - l - j"‘” — . ('xllf_ 2 lH} ) j{\”j, = == [ .}E{[."L,(.}, o .'ij,(. '”} (_:‘;/\3 'f’ (I;”('h + JI_?;,( '”}‘Hr\|}
o V1 +Tem)(1+Tepo) +3C3F —Co (A= X))+ CotR(4M5 —2F)
o= ([l L T-symmetry Breaking parameter
D (L4 Topuy) (L+Typy) 2 (1 + Topin) (L+ Thps) +(-—_E)[%( [\—\J—f—tR ;{—l\—_f:l
p(l — pt) E
T =T (1- 1},;«:) hrias) +2F {(ACy+ ACa) G do — (B.Cy+ BiC) M}
e Jty Jia o\’ +(2tR - n('..;f].
+ —) ")rl ] 'L,rnr p— preeemy e ey 4 -
: (f{l—ifr,;r]}Jr‘-’ilJrf.rﬂ:) l—fnﬂ) ]

X [Fer+ (M= N)e- +4tR (A + F (g4 — 1))]
+ (1 = 8ap) I\},;,} +{h = Ao}



Exact RMT Result for Partial T Breaking

@ RMT analysis based on Pluha¥, Weidenmuller, Zuk, Lewenkopf and Wegner, 1995
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Determination of T-Breaking Strength
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@ B. Dietz et al., Phys. Rev. Lett. 103, 064101 (2009).




Summary

@ Spectra of wave-dynamical systems show universal behaviour

@ Test of RMT predictions with microwave billiards

@ Investigated a chaotic T-invariant microwave resonator (i.e. a GOE system)
both in the regime of weakly overlapping resonances (I' < D) and in the

Ericson regime (I > D)

@ Exponential decay and gaussian distribution of S-matrix elements found in
the Ericson regime

@ Non-exponential decay and deviations from gaussian distribution of S-matrix
elements found in the regime of weakly overlapping resonances

@ Data are limited by rather small FRD errors, not by noise

@ Stringent test of the VWZ theory of chaotic scattering using this large number
of data points and a goodness-of-fit test




Summary ctd.

@ Investigated furthermore a chaotic T-noninvariant microwave resonator (i.e. a
GUE system) in the regime of weakly overlapping resonances

@ Principle of reciprocity is strongly violated (S_, # S, )
@ Data show, however, that TRSB is incomplete — mixed GOE / GUE system

@ RMT approach shows that full TRSB sets already in when the symmetry
breaking matrix element is of the order of the mean level spacing
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