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Classical Billiard



Regular
 

and Chaotic
 

Dynamics

Regular Bunimovich
 

stadium
 

(chaotic)

Equations of motion are integrable

Predictable for infinite long times

Energy and px

 

are conserved2

Equations of motion are not integrable

Predictable for a finite time only

Only energy is conserved



Tool: Poincaré
 

Sections
 

of Phase Space

conjugate
 variables

L

sin(φ)

Paramertization
 

of billiard boindary: L

Momentum component along the boundary: sin(φ)



Small Changes
 

→ Large Actions

Beyond a fixed, for the system characteristic time
 

becomes 
every prediction impossible. The system behaves in such a way 
as if not determined by physical laws but randomness

Sensitivity of the solutions of a deterministic problem with respect 
to small changes in the initial conditions is called Deterministic Chaos



Our
 

Main Interest

What
 

might
 

we
 

learn
 

from
 

generic
 

features
 

of billiards
and mesoscopic

 
systems

 
(hadrons, nuclei, atoms, molecules, 

metal clusters, quantum
 

dots) ?

How are these properties of classical systems transformed into
corresponding quantum-mechanical systems ? 
→ Quantum chaos ?



The
 

Quantum Billiard
 

and its
 

Simulation

2
ΔxΔp h

≥⋅
2

ΔxΔp h
≥⋅



Schrödinger
 

↔ Helmholtz

( ) 02 =+Δ zEk

2D microwave
 

cavity: hz

 

< λmin

 

/2

( ) 02 =Ψ+Δ k

quantum
 

billiard

c
fk π2

=2
2
h

mEk =

Helmholtz equation
 

and Schrödinger
 

equation
 

are
 

equivalent
 

in 2D. The
 motion

 
of the

 
quantum

 
particle

 
in its

 
potential can

 
be

 
simulated

 
by

 electromagnetic
 

waves
 

inside
 

a two-dimensional
 

microwave
 

resonator.



Superconducting
 

Niobium Microwave
 

Resonator



Experimental Setup

Superconducting
 

cavities

LHe
 

(T = 4.2 K)

f = 45 MHz ... 50 GHz

103...104

 

eigenfrequencies

Q = f/Δf ≈
 

106



Stadium Billiard
 

↔ n + 232Th



Niels Bohr’s
 

Model of the
 

Compound Nucleus



Random
 

Matrices ↔ Level Schemes
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Nearest
 

Neighbor
 

Spacings
 

Distribution

Poissonian
 

Random
 

Numbers
 

↔ ″Level Clustering″

GOE and GUE ↔ ″Level Repulsion″



Nearest
 

Neighbor
 

Spacings
 

Distribution

Universal (generic) behaviour
 

of the
 

two
 

systems

stadium
 

billiard nuclear
 

data
 

ensemble



Universality
 

in Mesoscopic
 

Systems:
 Quantum Chaos in Hadrons

Combined
 

data
 

from
 

measured
 

baryon
 

and meson
 

mass
 spectra

 
up to 2.5 GeV

 
(from

 
PDG)

P(
s)

Pascalutsa
 

(2003)

Spectra
 

can
 

be
 

organized
 

into
 

multiplets
 

characterized
 

by
 

a 
set

 
of definite quantum

 
numbers: isospin, spin, parity, 

strangeness, baryon
 

number, ...

Scale: 10-16

 

m



Universality
 

in Mesoscopic
 

Systems:
 Quantum Chaos in Atoms

8 sets
 

of atomic
 

spectra
 

of highly
 

excited
 

neutral and ionized
 rare earth

 
atoms

 
combined

 
into

 
a data

 
ensemble

Camarda
 

+ Georgopulos
 

(1983)

States
 

of same
 

total angular
 

momentum
 

and parity

Scale: 10-10

 

m



Universality
 

in Mesoscopic
 

Systems:
 Quantum Chaos in Molecules

Vibronic
 

levels
 

of NO2

Zimmermann et al. (1988)

States
 

of same
 

quantum
 

numbers

Scale: 10-9

 

m

S



Conjecture of Bohigas, Giannoni
 

+ Schmit
 

(1984)

How is the behaviour
 

of the classical system transferred
 to the quantum system ?

Answer: There is a one-to-one correspondence between billiards and
 mesoscopic

 
systems on all scales

For chaotic systems, the spectral fluctuation properties of eigenvalues
 coincide with the predictions of random-matrix theory (RMT) for matrices of 

the same symmetry class

Numerous tests of various spectral properties (NNSD, Σ2,
 

Δ3

 

, …) 
and wave functions exist

Our aim: to test this conjecture in scattering systems, i.e. in open chaotic 
microwave billiards particularly in the regime of weakly overlapping 
resonances



Microwave
 

Resonator
 

as a Model
 for

 
the

 
Compound Nucleus

Compound
NucleusA+a B+b

C+
c

D+d

rf
 

power
in     

rf
 

power
out     

Microwave
 

power is
 

emitted
 

into
 

the
 

resonator
 

by
 

antenna
and the output signal is received by antenna
→ Open scattering system
The antennas act as single scattering channels

Absorption into the walls is modelled by additive channels
G. E. Mitchell, A. Richter and H. A. Weidenmüller, arXiv:1001.2422v1 (2010)



a) b) c)

2
baain,bout, SP/P =

Typical
 

Transmission Spectrum

Transmission measurements: relative power from
 

antenna
 

a → b



Scattering
 

Matrix Description

Microwave
 

billiardCompound-nucleus
reactions

resonator Hamiltonian

coupling of resonator
states to antenna states
and to the walls

nuclear Hamiltonian

coupling of quasi-bound
states to channel states

← Ĥ
 

→

← Ŵ →

Ŝ(E) = 
 

- 2πi ŴT (E
 

-
 

Ĥ
 

+ iπ
 

ŴŴT)-1 Ŵ

Scattering matrix for both scattering processes 

Experiment:                                                     complex
 

S-matrix
 

elements

RMT description: replace
 

Ĥ
 

by
 

a matrix
 

for
 

systemsGOE T-inv
GUE T-noninv



∑ Γ+−

ΓΓ
−=

μ μμ

μμδ
)2/(iff

iS ba
baba

Use
 

eigenrepresentation
 

of

and obtain
 

for
 

a scattering
 

system
 

with
 

isolated
 

resonances
 a → resonator

 
→ b

Here:
 

of eigenvalues
 

of

Partial widths
 

fluctuate
 

and total widths
 

also

T
eff WWiHH ˆˆˆˆ π−=

ba μμ ΓΓ ,

=Γ
=

μ

μf real part

imaginary
 

part
effĤ

μΓ

Resonance
 

Parameters



Excitation
 

Spectra

overlapping
 

resonances
 for

 
Γ/D > 1 

 Ericson
 

fluctuations

isolated
 

resonances
for

 
Γ/D << 1

atomic
 

nucleus

ρ
 

~ exp(E1/2)

M

microwave
 

cavity

ρ
 

~ f

M

Universal description
 

of spectra
 

and fluctuations:
 Verbaarschot, Weidenmüller + Zirnbauer

 
(1984)



Spectra
 

and Correlation
 

of S-Matrix Elements

Correlation
 

function: )()()()()( εεε +−+= ∗∗ fSfSfSfSC

Γ/D
 

small

Resonances: eigenvalues

Regime of isolated resonances

Γ/D
 

~ 1

Fluctuations: Γcoh

Overlapping resonances



Ericson’s
 

Prediction
 

for
 

Γ
 

> D

22

2
2)(

ε
ε

+Γ
Γ

∝
coh

cohC

P. v. Brentano et al., PL 9 (1964) 48

Ericson
 

fluctuations
 

(1960):

Correlation
 

function
 

is
 

Lorentzian

Measured
 

1964 for
 

overlapping
 compound nuclear

 
resonances

Now
 

observed
 

in lots of different 
systems: molecules, quantum

 
dots, 

laser
 

cavities, microwave
 

cavities, …

Applicable
 

for
 

Г/D
 

>> 1 and for
 

many
 

open
 

channels
 

only

Different theoretical
 

approaches: Ericson
 

→ energy
 

and time domain
VWZ

 
→ RMT

Blümel
 

& Smilansky
 

→ semiclassical
 

approach



Fluctuations
 

in a Fully
 

Chaotic
 

Cavity
 

with
 

T-Invariance

Tilted stadium
 

(Primack
 

+ Smilansky, 1994)

GOE behaviour
 

checked

Measure
 

full
 

complex
 

S-matrix
 

for
 

two
 

antennas: S11

 

, S22

 

, S12



Spectra
 

of S-Matrix Elements in the
 

Ericson
 

Regime



Distributions
 

of S-Matrix Elements the
 

Ericson
 

Regime



Road to Analysis of the
 

Measured
 

Fluctuations

~
Solution: FT of C(ε) →

 
uncorrelated

 
Fourier

 
coefficients

 
C(t)

 Ericson
 

(1965)

Problem: adjacent
 

points
 

in C(ε) are
 

correlated

Development: Non Gaussian
 

fit and test procedure



Autocorrelation
 

Function
 

and Fourier
 

Coefficients
 in the

 
Ericson

 
Regime

Time domainFrequency
 

domain



Spectra
 

of S-Matrix Elements in the
 

Regime Γ/D ≲
 

1

Example: 8-9 GHz

Frequency

 

(GHz)

|S
|

S12

 

→

S11

 

→

S22

 

→



Distributions
 

of S-Matrix Elements in the
 

Regime Γ/D ≲
 

1

Clear
 

deviations
 

for
 

Γ/D d
 

1
 

which
 

still need
 

to be
 

modeled
 

theoretically

Ericson
 

regime: Re{S} and Im{S} should
 

be
 

Gaussian
 

and phases
 uniformly

 
distributed



Fourier
 

Transform
 

vs. Autocorrelation
 

Function

Time domain Frequency
 

domain

← S12

 

→

← S11

 

→

← S22

 

→

Example
 

8-9 GHz
Frequency

 
domain



Exact
 

RMT Result
 

for
 

GOE Systems
Verbaarschot, Weidenmüller and Zirnbauer

 
(VWZ) 1984 for

 
arbitrary

 
Г/D

 
:

VWZ-integral: C = C(Ti

 

, D ; ε)

Transmission coefficients Average
 

level
 

distance

Rigorous
 

test of VWZ: isolated
 

resonances, i.e. Г
 

<< D

First test of VWZ in the
 

intermediate
 

regime, i.e. Г/D ≈
 

1, with
 

high 
statistical

 
significance

 
only

 
achievable

 
with

 
microwave

 
billiards

Note: nuclear
 

cross section
 

fluctuation
 

experiments
 

yield
 

only
 

|S|2



Present
 

work:
 S-matrix Fourier transform decay time (indirectly measured)

Future work
 

at NIF:
 Direct

 
measurement

 
of the

 
decay

 
time of an excited

 
nucleus

 
might

 become
 

possible
 

by
 

exciting
 

all nuclear
 

resonances
 

(or
 

a subset
 

of 
them) simultaneously

 
by

 
a short

 
laser

 
pulse.

Corollary



Search
 

for
 

TRSB in Nuclei: Ericson
 

Regime



• •
a b

T-symmetry
 

breaking
 

caused
 

by
 

a magnetized
 

ferrite

Ferrite features
 

ferromagnetic
 

resonance
 

(FMR)

Coupling
 

of microwaves
 

to the
 

FMR depends
 

on the
 

direction
 

a b

Sab

Sba

ab

Principle
 

of detailed
 

balance:

Principle
 

of reciprocity:

F

Induced
 

Time-Reversal
 

Symmetry
 Breaking

 
(TRSB) in Billiards



Clear
 

violation
 

of reciprocity
 

in the
 

regime
 

of

S12
S21 

1/ ≈Γ D

Violation
 

of Reciprocity



)()()()(),,( *
2112

*
2112

*
2112 fSfSfSfSSSC −+= εε

Crosscorrelation
 

function:

Determination of T-breaking
 

strength
 

from
 

the
 

data

Special interest
 

in first
 

coefficient
 

(ε
 

= 0)

Analysis of Fluctuations
 

with
 

Crosscorrelation
 

Function



Data: TRSB is
 

incomplete
 

→ mixed
 

GOE/GUE system

⎩
⎨
⎧

=
0
1

),( *
2112 SSC

for
 

GOE
for

 
GUE

Experimental Crosscorrelation
 

Coefficients



RMT analysis
 

based
 

on Pluhař, Weidenmüller, Zuk, Lewenkopf
 

and Wegner, 1995

),,;,,( 21 ξετ DTTC abs

T-symmetry
 

breaking
 

parameter

Exact
 

RMT Result
 

for
 

Partial T Breaking



RMT analysis
 

based
 

on Pluhař, Weidenmüller, Zuk, Lewenkopf
 

and Wegner, 1995

RMT → ( )
⎩
⎨
⎧

=+=
1
0

,/ ξπξ as HNiHH
for

 
GOE

for
 

GUE

Exact
 

RMT Result
 

for
 

Partial T Breaking



B. Dietz et al., Phys. Rev. Lett. 103, 064101 (2009).

Determination of T-Breaking
 

Strength



Summary

Spectra
 

of wave-dynamical
 

systems
 

show
 

universal behaviour

Test of RMT predictions
 

with
 

microwave
 

billiards

Investigated
 

a chaotic
 

T-invariant microwave
 

resonator
 

(i.e. a GOE system) 
both

 
in the

 
regime

 
of weakly

 
overlapping

 
resonances

 
(Γ

 
≲

 
D) and in the

 Ericson
 

regime
 

(Γ
 

≫ D)

Exponential decay
 

and gaussian
 

distribution
 

of S-matrix
 

elements
 

found
 

in 
the Ericson regime

Non-exponential
 

decay
 

and deviations
 

from
 

gaussian
 

distribution
 

of S-matrix
 elements

 
found

 
in the

 
regime

 
of weakly

 
overlapping

 
resonances

Data are
 

limited
 

by
 

rather
 

small
 

FRD errors, not
 

by
 

noise

Stringent test of the
 

VWZ theory
 

of chaotic
 

scattering
 

using
 

this
 

large number
 of data

 
points

 
and a goodness-of-fit

 
test 



Summary
 

ctd.

Investigated
 

furthermore
 

a chaotic
 

T-noninvariant
 

microwave
 

resonator
 

(i.e. a 
GUE system) in the

 
regime

 
of weakly

 
overlapping

 
resonances

Principle
 

of reciprocity
 

is
 

strongly
 

violated
 

(Sab

 

≠
 

Sba

 

)

Data show, however, that
 

TRSB is
 

incomplete
 

→ mixed
 

GOE / GUE system

RMT approach
 

shows
 

that
 

full
 

TRSB sets
 

already
 

in when
 

the
 

symmetry
 breaking

 
matrix

 
element

 
is

 
of the

 
order of the

 
mean

 
level

 
spacing
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