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Outline of Lectures
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Standard Model of Electroweak Interactions

Searches for Violations of Discrete Symmetries

Charged Lepton Flavor Violation and Precision Weak 
Neutral Current experiments

Precision Weak Charged Current Experiments & 
Electroweak Probes of Hadron Structure
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Discussion Point on 
Lecture #1
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For good high energy behaviour, Higgs must couple to me. 
Why? Hint: if massless, helicity must be conserved 
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Outline of Lecture #2

Symmetries and Conservation Laws

Discrete and Continuous Symmetries

Discoveries of P and CP violation

T Violation and EDMs

4
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Symmetries and 
Conservation Laws
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Noether’s Theorem:

e.g. Charge 
Conservation

Conserved Quantities/Quantum Numbers

If Euler-Lagrange equation is invariant under any 
coordinate transformation,     an integral of motion∃

Not just space-time symmetries: Invariance of Lagrangian/Hamiltonian

Symmetry conservation law

time

rotation

momentum

energy

angular momentum

translation

[Q, H] = 0→ d < Q >

dt
= 0 Q|Ψ >= q|Ψ >
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Symmetries and Groups
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Discrete Symmetry

Symmetry operations:
Group of all operations: display closure & 
Associativity and have identity and inverse 

Continuous Symmetry

Finite Group

Infinite Group

In Physics, group operations can be represented by matrices

SO(n): n-D rotations SO(3)          SU(2)
Invariance under SU(2): Angular Momentum Conservation
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Continuous Symmetries
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Rotation in 
“Isospin Space”

Local U(1) Invariance: AµJµ Electromagnetic Interactions

(
p
n

)
nucleon-nucleon interaction Hamiltonian invariant 
under SU(2) transformations in Isospin Space

(
νe

e−

)

L

the “massless” left-handed electron and electron-
neutrino are part of a similar “weak isospin” doublet

L = ψ̄(iγµ∂µ −m)ψDirac free particle 
Lagrangian U(1) Invariance: conserved current ∂µJµ = 0

SU(2) invariance yields 3 
independent conserved currents

(there are 3 independent 
2x2 Pauli spin matrices)
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Symmetries of the 
Electroweak Lagrangian
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Exact symmetries of nature: fully manifest in the early universe

two weak charged currents

SU(3)c and gluons

After spontaneous symmetry breaking via Higgs Mechanism:

SU(2)L × U(1)Y → U(1)EM

electromagnetic current weak neutral current

W± γ Z0

Quantum Chromodynamics

4 conserved currents
local gauge invariance yields 4 bosons: W+, W-, W0, B0SU(2)L × U(1)Y

Unbroken exact symmetries: massless mediator & infinite range force 
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Additive Conservation 
Laws
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Proton Decay? Highly suppressed (lucky us!)

Electric Charge 
is conserved

Charge is quantized
sum of initial charges = sum of final charges

p→ e+π0

Are there other symmetries 
at low energies?

Are they exact?

If approximate, were they 
unbroken in the early universe?

We know baryons are 
made of 3 quarks

Conserved quark current: 
consequence of SU(3)c

quark (baryon) # violations suppressed on general grounds based on 
the symmetries of the electroweak Lagrangian
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Baryon & Lepton 
Number
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No fundamental reason: Certainly not as 
unbroken exact symmetries of nature

Neutrino Mass leads to the speculation that 
neutrinos are their own anti-particles

If a process is not forbidden, it will occur!

Introduce Baryon B and Lepton number L: opposite sign for anti-particles

n→ pe−ν̄e
ν̄ep→ e+n

ν̄en→ e−p

observed

not observed

would lead to signals in Eotvos-
style fifth force searches

Are these exact conservation laws?

Neutrino-less Double 
Beta Decay
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Discrete Symmetries 
C, P & T
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Parity P

Charge Conjugation C

Time Reversal T 

x, y, z → −x,−y,−z Pψ("r) = ψ(−"r)

C|p >= |p̄ > All quantum numbers flip sign 
except mass and spin

P 2 = I Group has 2 elements, P and I

[H,P ] = 0 Hψ = Eψ Pψ = πψ π = ±1&
If hamiltonian is invariant under parity transformations, then    is conserved and observableπ

particles that are its own anti-particles are eigenstates of C

C|γ >= −|γ > π0 → γγ C|π0 >= +|π0 >
π0 → γγγ
forbidden

Tψ(t) = ψ∗(−t) reactions are reversible in 
principle if T is conserved
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Discovery of 
Parity Violation
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Weak decay of
60Co Nucleus

60Co

60Ni

Classic example: Puzzle in accelerator result; theorists propose a 
solution; test on a different process (table-top) 

Tau-theta puzzle (1956)

e.g. pions:Particle Classification Sπ 0+ pseudoscalar mesons

θ+ → π+π0 τ+ → π+π0π0

same mass but different parities! Lee and Yang propose:

(P=+1) (P=-1)

The SAME particle is produced in strong interactions, but decays via weak interactions; 
P conserved in strong interactions, but not in weak interactions

C.S. Wu et al: Beta’s in decays of 
60Co nuclei aligned in a magnetic 

field showed anisotropy
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Neutral Kaon System
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Also K-: Opposite “strangeness” quantum numbersτ+ = θ+ = K+ ≡ s̄u

K0 ≡ s̄d K̄0 ≡ s̄d Also opposite strangeness: are they distinct?&

Gell-Mann and Pais propose a test assuming CP conservation

CP |νeL >= |ν̄eR >
|K1 >=

1√
2
(|K0 > +|K̄0 >

|K2 >=
1√
2
(|K0 > −|K̄0 >

CP |K̄0 >= |K0 >
CP |K0 >= |K̄0 >

CP |K1 >= +|K1 >

CP |K2 >= −|K2 >

CP |ππ >= +|ππ >

CP |πππ >= −|πππ >

If CP is conserved:
K1 → ππ

K1 → πππ

K2 → πππ

K2 → ππ

allowed

forbidden

Elegant Prediction: 
Existence of K2

two pion decay lifetime much shorter than three pion case

start with K0’s; have near and far detectors; 2 pions in 
near detector, 3 pions in far detector
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Discovery of 
CP Violation
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Anti-K0’s have much larger cross-section  to scatter off nuclei

start with K0’s: 
contains K1’s and K2’s 

drift region 
(vacuum)

K2’s only: 
antiK0’s! 

K2’s only: 
antiK0’s! 

material
K1’s again:

2 pion decays!

Christensen, 
Cronin, Fitch 
and Turlay

Startling observation: take material away and 
some residual 2 pion decays remain!!!!

|K̄0 >=
1√
2
(|K1 > −|K2 >)

|K0 >=
1√
2
(|K1 > +|K2 >)

|KL >=
1√

1 + ε2
(|K2 > +ε|K1 >) |KS >=

1√
1 + ε2

(|K1 > −ε|K2 >)

Impressive experimental challenges overcome:
only careful, methodical and confident experimentalists need apply!
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Matter-Antimatter 
Asymmetry
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Anomalous B-violating processes

Prevent washout by inverse processes

Sakharov Criteria

• B violation

• C & CP violation

• Nonequilibrium 
 
 dynamics

Sakharov, 1967

CP violation in the weak interactions requires 3 generations of quarks:   

Ensures quark mixing matrix has complex phase

However, electroweak CP phase explains Kaons; insufficient for consideration above
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CPT Theorem and 
T Violation 
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The renormalizable field theories such as the ones that 
describe strong and electroweak interactions conserve CPT: 

e.g. masses and lifetimes of particle and anti-particle 

CP violation therefore implies T violation
added impetus for new sources of CP & T violation: 

observed matter-anti-matter asymmetry

i!∂Ψ
∂t

= −
( !2

2m

)∂2Ψ
∂x2

+ V Ψ

If V is real then T is a good symmetry Ψ(t) Ψ∗(−t)

If V is complex, then T is violated; quantified by a complex phase

& are solutions



NNPSS 2010 Lecture 1Krishna Kumar

Electric Dipole Moments
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raw sensitivity:

d ~ (m x e)/!2

d ~ 10-27: ! ~ 100 TeV

Most practical way to find T violation:
establish permanent electric dipole moment for a fundamental particle

P T

D S

Charge q displaced from -q by a distance r creates an EDM

!d = q!r
If T is conserved and d is non-zero: degenerate particle states
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EDM Approaches 
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Experimental Concept
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#
1 =

2 µ $ + 2dE

h
#

2 =
2µ B " 2dE

h
#

1
– #

2 = 4dE
h

Single atom with coherence time %:

N uncorrelated atoms measured for time T >> %:

• Statistical Sensitivity:

B E

d µ

#1

B E

d µ

#1

• Measure spin-precession frequencies

&d = h
2E

1

2%TN

H = −!µ× !B − !d× !E

δω =
1
τ
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Hg EDM Experiment
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Solid-state Quadrupled UV laser

High purity non-magnetic vessel Hg Vapor cells

100,000 hours of operation

Spin coherence time:    300 sec

Electrical Resistance: 2'1016 (

All materials 

tested with 

SQUID

M. Romalis
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Interpretation of 
Hg EDM
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• No atomic EDM due to EDM of the nucleus " Schiff’s Theorem

)Electrons screen applied electric field

• d(Hg) is due to finite nuclear size

) nuclear Schiff moment  S " Difference between mean square radius of the 
charge distribution and electric dipole moment distribution

)Schiff moment induces parity mixing of atomic states, giving an 
atomic EDM:

)RA - from atomic wavefunction calculations, uncertainty 20%

E

I

M. Romalis



NNPSS 2010 Lecture 1Krishna Kumar

Ra-225 Experiment
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Z-T Lu, ANL 
Atom Trap Program

Future:
Improve 

sensitivity by 2 
orders of 
magnitude
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Neutron EDM
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• Superthermal production in superfluid 4He

)N increased by 100 – 10000

• He-4 good isolator, low temperature

)E increased by 5

• Superconducting magnetic shields

• SQUID magnetometers

1

m

New Concept: 3He co-magnetometer

ILL, Grenoble, France
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US nEDM experiment
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SNS
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Summary of EDM 
Experiments
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Area of Intense Activity
Both theory and experiment

Atomic experiments, 
cryogenic experiments, 

storage rings.....
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Summary

Symmetries have played and continue to play a 
profoundly important role in shaping theoretical 
and experimental research in the search for 
physics beyond the standard model

A very important complementary experimental 
approach that involve nuclear theorists and 
experimentalists is the search for a permanent 
electric dipole moment of an elementary particle

26


