Lecture 2: Chiral Perturbation Theory
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QCD in the light quark (up & down) sector
(QCD-light) has two mass scales

M(GeV) *?




Eitective Field Theory

s> In a generic physical system, there are often many scales
involved. However, for a specific problem under
consideration, it may depends on physics only on a
particular scale.

s One can “integrate out” physics at other scales and focus on
the dynamics on the degrees of freedom relevant to that
scale: Effective (Field) Theory

s Many example:

o Fluid Dynamics
o Multiple expansion in Electrodynamics
o Nuclear Physics
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Chiral Symmetry of (/CD-lighi

s> When quarks are massless, N, flavor of QCD lagrangian
has U, (N x Ugx(Np chiral symmetry.

so Each quark has a left-handed and right-handed
components,
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so The left and right-handed fields do not couple to each
others in the massless limit. Each fields can rotate
independently producing a symmetry group U, (No) x
Ur(Nyp
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The Folklore

so Up(Np x Ug(Np contains two U(1) symmetries: vector and
axial: Vector U(1) is related to baryon number, and the
axial U(1) is broken by anomaly.

so The anomaly is a phenomenon that a classical symmetry is
broken by quantum fluctuations, and was first discovered
by Adler, Bell, and Jackiw.

so The remaining chiral symmetry SU, (N,) x SUL(N,) is
broken spontaneously to SU(N; ) flavor symmetry (isospin)
discussed in the previous lecture.

s> SSB: spontaneous symmetry breaking.



A Bit Group Theory

so The representation of SU(2) group [angular momentum
algebra] contains dimensions, 1, 2, 3... (2j+1),...

so Therefore the representation of the chiral group SU, (2)x
SURr(2) can be labeled by (2j,+1, 2j,+1).

so The left-handed quark field is (2,1) and the right-handed
quark field is (1,2).

so Isospin representations comes from adding the two reps.
s> The quark mass terms 1 = mutu +madd
can be decomposed into  H, = m, (i ug + dguy) +my(dydg + dgrdy,) .

itis a (2-bar, 2) + (2, 2-bar), not invariant under chiral
symmetry



Spontaneous Symmeiry Breaking

V
s> A simple example is a particle A

moving in a double well.

o When the mid-barrier is finite,
the ground state is always
symmetric in X — ~X.

s> However, when the height is
going to infinity, the ground state
is degenerate, and the physical
ground state is for the particle in
either wells, a broken symmetry
state.

5o Another example of SSB is
spontaneous magnetization of a
piece of magnet.
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Nambu-Goldstone Theorem

s> In the case of the SSB of a continuous symmetry, there are
massless Goldstone bosons produced as result. This is
because everywhere in the space, one can choose a different
vacuum (vacuum degeneracy), there is no energy difference
between the different choices.

s> Pion would have been the massless Goldstone boson
associated with the chiral symmetry breaking of SU, (2)x
SUR(2), if the quark masses were zero.

so The pion interactions must be derivative-coupled because
in the long wavelength limit, the interactions vanish,
because the long-wavelength pion approaches the vacuum.



Order Parameter

s> When SSB happens, there is an order parameter which
characterizes the symmetry breaking.

so The physical vacuum no longer invariant under chiral
symmetry, rather, it is a sum of chiral reps,

vac) >=[(1,1)) +(2,2)) +(3,3)) + ..

the chiral representation must have isospin 0, so j,=j,.

s> Therefore, there is a non-zero chiral consendate in the
physical vacuum, which characterizes the scale at which
SSB happens

(O|au + dd|0)



Non-linear realization of chiral symmeiry

s> Easiest way to see that pions are derivatively coupled is to

introduce a U fields that transforms as (2,2) of the chiral
group.

U - LUR"
which contains the Goldstone boson field.

so Construct lagrangian that are invariant under the chiral
transformation.

5o After SSB, U is related to the pion field,
[ — Jelﬁﬁ""'[ﬂ:}ir“ff“

Or we simply write this U= 6, here X is a non-linear
realization of chiral symmetry.



Power counting

s> When the energy of the pion is low, derivatives are small
compared to the scale of SSB. Therefore, one can make
expansion in 0/f

so This expansion is called the chiral expansion.

s> Taking into account the non-zero pion mass, m_sf_is
another small expansion parameter.

so Chiral perturbation theory (ChiPT) carries out systematic
expansion in these small parameters. Since the theory uses
symmetry and SSB, test of ChiPT is usually considered as a
test of QCD itself. [“If ChiPT does not work, QCD is in
trouble.”]



s> Pion is massless in the chiral limit. Therefore, its non-zero
mass must come from the non-zero quark mass.

s One can show,

my = —(my, + ma)(0uu + dd|0)/ f

which is linear in quark mass and also related to the chiral
condensate!



Lagrangian for Pion

The simplest lagrangian for pure pion involves the kinetic
energies and pion mass, second-order in small
parameter

the dependence in the pion mass is analytical in sense that
itis a Taylor expansion.

Higher-order term can also be written down, involving
more unknown constants, called chiral constants
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Pion-pion Scattering

s» Expand the pion lagrangian to the first non-trivial order

1
SE
There is no unknown parameter!

1
ﬁﬁg = 5(8#??)2 + (T - ﬁ)g - ﬁg(aﬁaﬁ)g] T

s» Taking into account the pion mass effects as well,
M = = [ (8as0ca(s = m2) + SacOpalt — m2) + Saabpe(u — m?))
s Scattering length in isospin 0 and 2 sectors,
ag = Tmg /327 f2 = 0.16m; "

ay = —2my /327 f2 = —0.046m"

Experimentally, ay = 2640.5
a; = —0.028 4 0.012



Chiral Physics in the Nucleon




What’s calculable and what’s not?

s> Since only the long distance part of nucleon physics is
related to the pion and is calculable using the ChiPT, the
short distance physics are parameterized by the so-called
low-energy constants. There are large number of such low-
energy constants.

so The predictive power of ChiPT comes from distinctive
contributions of the pion, non-analytic contributions from
the pion mass.



Singular Contribution and IR divergence

s> Loop calculations depend on the pion propagator:

with loop momentum-k to be integrated over. The
integrations can generate non-analytic dependence on
m. 2
What are they? 1/m " (n>0), m;2"*1, In(m,), ...
so There dependence usually comes from IR divergences.

so Dependence on m_? in the counter terms are analytic
because they are treated in perturbative expansion.



Pion-Nucleon Coupling

g,: heutron decay constant, dimension O
f.: pion decay constant, dimension 1



HBChPT vs. Relativisitc ChPT

soHeavy-Baryon Chiral Perturbation Theory

Get rid of the hadron mass scale, my ->o0.

Physics at scale my is not really calculable in chiral
perturbation theory, should be included in the counter
terms.

soRelativistic Chiral Perturbation Theory

Contain partial high-order contributions.

Better or Worse? Don’t know. They provide some idea on
the size of higher-order corrections.



The Nucleon Mass

so At leading order (one-loop), two powers of
1/4mt,
so Since the contribution must have a dimension of mass

Since this is nonanalytic, the coefficient is calculable! (3/112).
It contributes —15 MeV to the nucleon mass.

There is a m_? contribution, proportional to the o-term.



Isovector charge radius

S
s <r2> has a mass~-dimension —2.

so Leading pion-loop has a factor of 1/(4mf_)?
so Therefore, the chiral contribution goes like

which diverges as m_—0. (coefficient (5g,%+1))
just like the charge radius of the electron in QED!
s> Isoscalar charge radius is regular as m_—0.

so Small neutron charge radius is an accident!



Isovector magnetic moment

s> Magnetic moment has a mass dimension —1.
so Leading pion-loop has a factor of 1/(4mf_)?
so Thus the nonanalytical chiral contribution,

so Coefficient is —21g 2

A significant contribution at physical pion mass.



Low-energy Scattering off the Nucleon

so Compton Scattering and Sum Rules

o Real Photon
o Virtual Photon
o Doubly Virtual Photon

so Pion-photo and electroproduction
s Pion scattering
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Spin-Dependent Forward Compton Scattering

a, Q q,m

P,S P,S

so Two Compton amplitudes:

TP, g, 8) = —ievFg, [Sﬂﬂ, (1, Q%)+ (Muy Sz — § - q Ps) Safv, Q“}] .
S, and S, at low energy can be calculated in CHIPT



Dispersion Sum Rules

so Unsubtracted dispersion relations
& P o2
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G, is the spin-dependent structure function.
s Expand at small B,
Sk @) = 3 8@,
=02 4,...

s> Dispersion sum rules valid at all Q?

SEH}[QE} = 4 - i
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XJi & J. Osborne, JPG27, 127 (2001)



The First 6; Sum Rule

51{'[]*@2}=4 - d_y'jl

Q2 v

(v, Q%) -

so At low-Q?, S;(0,Q?% can be calculated in CHIPT
At O(p3), S4(0,Q?) is zero
At O(p*): Ji, Kao, Osborne, PLB472,1(2000)
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Party-Violating Photo-Pion Production

s> Can be used to measure the parity-violating pion-nucleon

coupling

_.-i £ = —ihiy P n et

so Calibration:

140 _—
120 *

S o0 ta
80

(ub) o
40
20

160 180 200 220

E, (MeV)



Low-energy theorem

i LA 4

FlG 20 Feynman diagrams contributing to the par-
ity-violating amplitudes at LO (O 1)) and NLO [(Ofp)) in
Fp = otn

0) = Vi fx (py — Pﬂ}hﬂw |

FATMN

-"q-"r {H'I:-]'I:I

~ 2 X107

J.W.Chen & X.Ji, PRL86,4239 (2000)



