
  



 QCD in the light quark (up & down) sector 
(QCD-light)  has two mass scales 
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 In a generic physical system, there are often many scales 
involved. However, for a specific problem under 
consideration, it may depends on physics only on a 
particular scale.  

 One can “integrate out” physics at other scales and focus on 
the dynamics on the degrees of freedom relevant to that 
scale: Effective (Field) Theory 

 Many example: 

o Fluid Dynamics 
o Multiple expansion in Electrodynamics 
o Nuclear Physics 
o …. 
 

 



 When quarks are massless, Nf flavor of QCD lagrangian 
has UL(Nf) x UR(Nf) chiral symmetry.  

 Each quark has a left-handed and right-handed 
components,  

 

 

 The left and right-handed fields do not couple to each 
others in the massless limit. Each fields can rotate 
independently producing a symmetry group UL(Nf) × 
UR(Nf)  



 UL(Nf) × UR(Nf) contains two U(1) symmetries: vector and 
axial: Vector U(1) is related to baryon number, and the 
axial U(1) is broken by anomaly. 

 The anomaly is a phenomenon that a classical symmetry is 
broken by quantum fluctuations, and was first discovered 
by Adler, Bell, and Jackiw. 

 The remaining chiral symmetry SUL(Nf) × SUR(Nf) is 
broken spontaneously to SU(Nf ) flavor symmetry (isospin) 
discussed in the previous lecture.  

 SSB: spontaneous symmetry breaking.  



  The representation of SU(2) group [angular momentum 
algebra] contains dimensions, 1, 2, 3… (2j+1),… 

 Therefore the representation of the chiral group SUL(2)×  
SUR(2) can be labeled by (2j1+1, 2j2+1).  

 The left-handed quark field is (2,1) and the right-handed 
quark field is (1,2).  

 Isospin representations comes from adding the two reps. 

 The quark mass terms  

      can be decomposed into    

      it is a (2-bar, 2) + (2, 2-bar), not invariant under chiral  
symmetry  

 



 A simple example is a particle 
moving in a double well.  

 When the mid-barrier is finite, 
the ground state is always 
symmetric in x –› -x.  

 However, when the height is 
going to infinity, the ground state 
is degenerate, and the physical 
ground state is for the particle in 
either wells, a broken symmetry 
state.  

  Another example of SSB is 
spontaneous magnetization of a 
piece of magnet.   



 In the case of the SSB of a continuous symmetry, there are 
massless Goldstone bosons produced as result. This is 
because everywhere in the space, one can choose a different 
vacuum (vacuum degeneracy), there is no energy difference 
between the different choices.    

 Pion would have been the massless Goldstone boson 
associated with the chiral symmetry breaking of SUL(2)×  
SUR(2), if the quark masses were zero.  

 The pion interactions must be derivative-coupled because 
in the long wavelength limit, the interactions vanish, 
because the long-wavelength pion approaches the vacuum.  



 When SSB happens, there is an order parameter which 
characterizes the symmetry breaking.  

 The physical vacuum no longer invariant under chiral 
symmetry, rather, it is a sum of chiral reps,  

 

 

     the chiral representation must have isospin 0, so j1=j2.  

 Therefore, there is a non-zero chiral consendate in the 
physical vacuum, which characterizes the scale at which 
SSB happens 

 



 Easiest way to see that pions are derivatively coupled is to 

introduce a U fields that transforms as (2,2) of the chiral 
group.  

        U –› LUR-1 

which contains the Goldstone boson field.  

 Construct lagrangian that are invariant under the chiral 
transformation.  

 After SSB, U is related to the pion field,   

 

 

      Or we simply write this U= ,  here  is a non-linear 
realization of chiral symmetry.  



 When the energy of the pion is low, derivatives are small 
compared to the scale of SSB. Therefore, one can make 
expansion in  /f π 

 This expansion is called the chiral expansion.  

 Taking into account the non-zero pion mass,  mπ/f π is 
another small expansion parameter.   

 Chiral perturbation theory (ChiPT) carries out systematic 
expansion in these small parameters. Since the theory uses 
symmetry and SSB, test of ChiPT is usually considered as a 
test of QCD itself. [“If ChiPT does not work, QCD is in 
trouble.”] 



 Pion is massless in the chiral limit. Therefore, its non-zero 
mass must come from the non-zero quark mass. 

 One can show,  

 

 

      which is linear in quark mass and also  related to the chiral 
condensate!  



The simplest lagrangian for pure pion involves the kinetic 
energies and pion mass, second-order in small 
parameter 

 

 

 the dependence in the pion mass is analytical in sense that 
it is a Taylor expansion.  

Higher-order term can also be written down, involving 
more unknown constants, called chiral constants  
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 Expand the pion lagrangian to the first non-trivial order  

 

 

  There is no unknown parameter!  

 Taking into account the pion mass effects as well,   

 

 Scattering length in isospin 0 and 2 sectors,  

 

 

Experimentally,    

 



1/mN  

1/mπ “pion cloud”  



 Since only the long distance part of nucleon physics is 
related to the pion and is calculable using the ChiPT, the 
short distance physics are parameterized by the so-called 
low-energy constants. There are large number of such low-
energy constants.  

 The predictive power of ChiPT comes from distinctive 
contributions of the pion, non-analytic contributions from 
the pion mass.  

 



 Loop calculations depend on the pion propagator: 

    

 
with loop momentum-k to be integrated over. The 

integrations can generate non-analytic  dependence on 
mπ

2 

What are they?  1/mπ
n (n>0), mπ

2n+1,  ln(mπ) , … 
 There dependence usually comes from IR divergences.  

 Dependence on mπ
2 in the counter terms are analytic 

because they are treated in perturbative expansion. 
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gA: neutron decay constant, dimension 0 
fπ: pion decay constant, dimension 1 



Heavy-Baryon Chiral Perturbation Theory 

   Get rid of the hadron mass scale,  mN ->∞. 

    Physics at scale mN is not really calculable in chiral 
perturbation theory, should be included in the counter 
terms.  

Relativistic Chiral Perturbation Theory 
   Contain partial high-order contributions. 

    Better or Worse? Don’t know.  They provide some idea on 
the size of higher-order corrections. 



 At leading order (one-loop), two powers of  

                1/4πfπ 
 

 Since the contribution must have a dimension of mass 

   

 

 

    Since this is nonanalytic, the coefficient is calculable!  (3/π2). 
It contributes –15 MeV to the nucleon mass.  

There is a mπ
2 contribution, proportional to the -term. 
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 <r2> has a mass-dimension –2.  

 Leading pion-loop has a factor of  1/(4πfπ)2 

 Therefore, the chiral contribution goes like 

 

 

   which diverges as mπ –›0.  (coefficient (5gA
2+1)) 

    just like the charge radius of the electron in QED! 

 Isoscalar charge radius is regular as mπ –›0. 

 Small neutron charge radius is an accident! 
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 Magnetic moment has a mass dimension –1. 

 Leading pion-loop has a factor of  1/(4πfπ)2 

 Thus the nonanalytical chiral contribution,  

 

 

 Coefficient is –2πgA
2 

     A significant contribution at physical pion mass. 
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 Compton Scattering and Sum Rules 
o Real Photon 
o Virtual Photon 
o Doubly Virtual Photon 

 Pion-photo and electroproduction 

 Pion scattering  

 …. 

 

 

  



 

 

 

 

 

 

 Two Compton amplitudes: 

 

 

    S1 and S2 at low energy can be calculated in CHIPT 

P,S P,S 

q,  q, 



 Unsubtracted dispersion relations 

 

 

    G1 is the spin-dependent structure function. 

 Expand at small , 

 

 

 Dispersion sum rules valid at all Q2 

X.Ji & J. Osborne, JPG27, 127 (2001) 



 

 

 

 At low-Q2, S1(0,Q2) can be calculated in CHIPT 

 At O(p3), S1(0,Q2) is zero 
    At O(p4):    Ji, Kao, Osborne, PLB472,1(2000) 

 

 

 

  



Data: M. Amarian et.al. PRL89, 242301 (2002) 

Bernard,Hemmert,Meissner (2002) 

Ji,Kao,Osborne (2000) 



 Can be used to measure the parity-violating pion-nucleon 
coupling  

 

 

 

 Calibration: 



~ 2 X10-7 

J.W.Chen & X.Ji, PRL86,4239 (2000) 


