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 QCD in the light quark (up & down) sector 
(QCD-light)  has two mass scales 
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 In a generic physical system, there are often many scales 
involved. However, for a specific problem under 
consideration, it may depends on physics only on a 
particular scale.  

 One can “integrate out” physics at other scales and focus on 
the dynamics on the degrees of freedom relevant to that 
scale: Effective (Field) Theory 

 Many example: 

o Fluid Dynamics 
o Multiple expansion in Electrodynamics 
o Nuclear Physics 
o …. 
 

 



 When quarks are massless, Nf flavor of QCD lagrangian 
has UL(Nf) x UR(Nf) chiral symmetry.  

 Each quark has a left-handed and right-handed 
components,  

 

 

 The left and right-handed fields do not couple to each 
others in the massless limit. Each fields can rotate 
independently producing a symmetry group UL(Nf) × 
UR(Nf)  



 UL(Nf) × UR(Nf) contains two U(1) symmetries: vector and 
axial: Vector U(1) is related to baryon number, and the 
axial U(1) is broken by anomaly. 

 The anomaly is a phenomenon that a classical symmetry is 
broken by quantum fluctuations, and was first discovered 
by Adler, Bell, and Jackiw. 

 The remaining chiral symmetry SUL(Nf) × SUR(Nf) is 
broken spontaneously to SU(Nf ) flavor symmetry (isospin) 
discussed in the previous lecture.  

 SSB: spontaneous symmetry breaking.  



  The representation of SU(2) group [angular momentum 
algebra] contains dimensions, 1, 2, 3… (2j+1),… 

 Therefore the representation of the chiral group SUL(2)×  
SUR(2) can be labeled by (2j1+1, 2j2+1).  

 The left-handed quark field is (2,1) and the right-handed 
quark field is (1,2).  

 Isospin representations comes from adding the two reps. 

 The quark mass terms  

      can be decomposed into    

      it is a (2-bar, 2) + (2, 2-bar), not invariant under chiral  
symmetry  

 



 A simple example is a particle 
moving in a double well.  

 When the mid-barrier is finite, 
the ground state is always 
symmetric in x –› -x.  

 However, when the height is 
going to infinity, the ground state 
is degenerate, and the physical 
ground state is for the particle in 
either wells, a broken symmetry 
state.  

  Another example of SSB is 
spontaneous magnetization of a 
piece of magnet.   



 In the case of the SSB of a continuous symmetry, there are 
massless Goldstone bosons produced as result. This is 
because everywhere in the space, one can choose a different 
vacuum (vacuum degeneracy), there is no energy difference 
between the different choices.    

 Pion would have been the massless Goldstone boson 
associated with the chiral symmetry breaking of SUL(2)×  
SUR(2), if the quark masses were zero.  

 The pion interactions must be derivative-coupled because 
in the long wavelength limit, the interactions vanish, 
because the long-wavelength pion approaches the vacuum.  



 When SSB happens, there is an order parameter which 
characterizes the symmetry breaking.  

 The physical vacuum no longer invariant under chiral 
symmetry, rather, it is a sum of chiral reps,  

 

 

     the chiral representation must have isospin 0, so j1=j2.  

 Therefore, there is a non-zero chiral consendate in the 
physical vacuum, which characterizes the scale at which 
SSB happens 

 



 Easiest way to see that pions are derivatively coupled is to 

introduce a U fields that transforms as (2,2) of the chiral 
group.  

        U –› LUR-1 

which contains the Goldstone boson field.  

 Construct lagrangian that are invariant under the chiral 
transformation.  

 After SSB, U is related to the pion field,   

 

 

      Or we simply write this U= ,  here  is a non-linear 
realization of chiral symmetry.  



 When the energy of the pion is low, derivatives are small 
compared to the scale of SSB. Therefore, one can make 
expansion in  /f π 

 This expansion is called the chiral expansion.  

 Taking into account the non-zero pion mass,  mπ/f π is 
another small expansion parameter.   

 Chiral perturbation theory (ChiPT) carries out systematic 
expansion in these small parameters. Since the theory uses 
symmetry and SSB, test of ChiPT is usually considered as a 
test of QCD itself. [“If ChiPT does not work, QCD is in 
trouble.”] 



 Pion is massless in the chiral limit. Therefore, its non-zero 
mass must come from the non-zero quark mass. 

 One can show,  

 

 

      which is linear in quark mass and also  related to the chiral 
condensate!  



The simplest lagrangian for pure pion involves the kinetic 
energies and pion mass, second-order in small 
parameter 

 

 

 the dependence in the pion mass is analytical in sense that 
it is a Taylor expansion.  

Higher-order term can also be written down, involving 
more unknown constants, called chiral constants  
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 Expand the pion lagrangian to the first non-trivial order  

 

 

  There is no unknown parameter!  

 Taking into account the pion mass effects as well,   

 

 Scattering length in isospin 0 and 2 sectors,  

 

 

Experimentally,    

 



1/mN  

1/mπ “pion cloud”  



 Since only the long distance part of nucleon physics is 
related to the pion and is calculable using the ChiPT, the 
short distance physics are parameterized by the so-called 
low-energy constants. There are large number of such low-
energy constants.  

 The predictive power of ChiPT comes from distinctive 
contributions of the pion, non-analytic contributions from 
the pion mass.  

 



 Loop calculations depend on the pion propagator: 

    

 
with loop momentum-k to be integrated over. The 

integrations can generate non-analytic  dependence on 
mπ

2 

What are they?  1/mπ
n (n>0), mπ

2n+1,  ln(mπ) , … 
 There dependence usually comes from IR divergences.  

 Dependence on mπ
2 in the counter terms are analytic 

because they are treated in perturbative expansion. 
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gA: neutron decay constant, dimension 0 
fπ: pion decay constant, dimension 1 



Heavy-Baryon Chiral Perturbation Theory 

   Get rid of the hadron mass scale,  mN ->∞. 

    Physics at scale mN is not really calculable in chiral 
perturbation theory, should be included in the counter 
terms.  

Relativistic Chiral Perturbation Theory 
   Contain partial high-order contributions. 

    Better or Worse? Don’t know.  They provide some idea on 
the size of higher-order corrections. 



 At leading order (one-loop), two powers of  

                1/4πfπ 
 

 Since the contribution must have a dimension of mass 

   

 

 

    Since this is nonanalytic, the coefficient is calculable!  (3/π2). 
It contributes –15 MeV to the nucleon mass.  

There is a mπ
2 contribution, proportional to the -term. 
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 <r2> has a mass-dimension –2.  

 Leading pion-loop has a factor of  1/(4πfπ)2 

 Therefore, the chiral contribution goes like 

 

 

   which diverges as mπ –›0.  (coefficient (5gA
2+1)) 

    just like the charge radius of the electron in QED! 

 Isoscalar charge radius is regular as mπ –›0. 

 Small neutron charge radius is an accident! 
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 Magnetic moment has a mass dimension –1. 

 Leading pion-loop has a factor of  1/(4πfπ)2 

 Thus the nonanalytical chiral contribution,  

 

 

 Coefficient is –2πgA
2 

     A significant contribution at physical pion mass. 
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 Compton Scattering and Sum Rules 
o Real Photon 
o Virtual Photon 
o Doubly Virtual Photon 

 Pion-photo and electroproduction 

 Pion scattering  

 …. 

 

 

  



 

 

 

 

 

 

 Two Compton amplitudes: 

 

 

    S1 and S2 at low energy can be calculated in CHIPT 
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 Unsubtracted dispersion relations 

 

 

    G1 is the spin-dependent structure function. 

 Expand at small , 

 

 

 Dispersion sum rules valid at all Q2 

X.Ji & J. Osborne, JPG27, 127 (2001) 



 

 

 

 At low-Q2, S1(0,Q2) can be calculated in CHIPT 

 At O(p3), S1(0,Q2) is zero 
    At O(p4):    Ji, Kao, Osborne, PLB472,1(2000) 

 

 

 

  



Data: M. Amarian et.al. PRL89, 242301 (2002) 

Bernard,Hemmert,Meissner (2002) 

Ji,Kao,Osborne (2000) 



 Can be used to measure the parity-violating pion-nucleon 
coupling  

 

 

 

 Calibration: 



~ 2 X10-7 

J.W.Chen & X.Ji, PRL86,4239 (2000) 


