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Selected Topics in Lattice Quantum 

ChromoDynamics

• Key ideas and techniques of lattice QCD

• A few examples relevant to nuclear physics

– hadron spectrum

– nuclear force

• Background-field calculations

– magnetic moments

– polarizabilities

• Outlook

Frank X. Lee, George Washington University
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The Four Fundamental Interactions
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But, it is a long, hard struggle 

from quarks and gluons to …
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• Study of the very small is closely related 

to the study of the very big.
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The Particle Zoo (excitation spectrum of QCD)

Mesons (quark-antiquark)Baryons (3 quarks)
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A quantum mechanical analogy (the hydrogen atom)
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EM force vs. Strong force

• How does the proton get its mass?
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Two kinds of quarks

• Constituent quarks

– mu=md ~ 340 MeV, 

ms ~ 500 MeV

• Most of the proton 

mass comes from the 

quark masses.

• The mass splittings 

are provided by 

residual pair-wise 

interactions.

• QCD quarks

– mu ~ 3 MeV, md ~ 6 MeV, 

ms ~ 100 MeV

• Most of the mass and 

splittings come from 

interactions, to all 

orders of interaction.

• The quark masses only 

contribute to about 1% of 

the proton mass.

quark model QCD
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The proton in quark model: u

u d

The proton in QCD:
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Quantum Chromodynamics (QCD)

--- underlying theory of the strong interaction (one of the four 

fundamental interactions in nature besides gravity, electromagnetism

and the weak interaction)

qmDqFFL qQCD )(Tr 
2
1 ++= 


 

],[   :tensor strength Field  GGgGGF +−=

 gGD +=   :derivativeCovariant 

• Chiral symmetry and its spontaneous breaking

• Asymptotic freedom: perturbative at high energies

• Confinement: non-perturbative at low energies
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Quantum Chromodynamics (continued)
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All physics is computed from path integrals

which can be evaluated on a space-time lattice that involves 

millions of degrees of freedom. (hence the field is called lattice 

QCD or lattice gauge theory)

Basic computational methodology: From Action to Answers
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Path Integral Method 
(Richard Feynmann)

• Applicable to any problem that can be cast into the form 
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with an action, for example:

• Successfully used in

– statistical physics

– quantum chemistry

– condensed matter physics

– biological physics  

– quantum field theories (QED,QCD, …)

– and more

x2(t)

x1(t)

t1 t2

All possible paths
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How to compute proton’s mass in QCD?
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Quark propagator in QCD: building block of hadrons
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• Path integrals over gauge fields

– Monte-Carlo with weighting factor 

• Quenched approximation (set detM=1)

– Physically, suppress quark-antiquark bubbles in the vacuum q

_
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Quark fields can be integrated out by Grassmann algebra:
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Sample correlation function

• 204 lattice, a=0.15 fm, overlap fermions, m0a=0.02, 80 configs
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Key Ideas of Lattice QCD

• Discretization of 4-dimensional space-time by a lattice of 

spacing a, size V=Nx x Ny x Nz x Nt

– For example, 163x28 lattice at a=0.2 fm. 

So the physical volume is (3.2 fm)3x5.6 fm

– Quarks live on the sites

– Gluons live on the links

• Real time → imaginary time  (Minkowski space → Euclidean space)

– Space and time on equal footing

– Probability interpretation (e-S ), instead of oscillating phase (eiS )

– amenable to Monte-Carlo methods

• Infinite degrees of freedom → finite (albeit still millions)

– Can be manipulated by a computer

• Many-body, interacting problem → treated exactly by path integrals

– Evaluated numerically
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The real world is approached by

• Continuum limit

– finer grid (a → 0)

– larger lattice (L→ )

• Chiral limit (mq → 0)
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• Finite-element analysis

– space-time as a lattice

– path integrals

• Monte-Carlo Simulations

– Metropolis, heat-bath, molecular dynamics, hybrid, …

• Linear Algebra

– inversion of large matrices (typically on the order of  a few 

million by a few million); large memory and disk demands

– Conjugate Gradient, Krylov muti-mass shifted solvers

• Statistical data analysis

– 2 minimization

– Bayesian methods (priors, maximum entropy)

– Variational methods

Computational methods in lattice QCD
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Supercomputers

• As we approach reality (a → 0, L→ , mq → 0),  the cost of 

lattice simulations goes up dramatically

– need supercomputers, parallel processing, faster networks, faster 

algorithms, …

– Lattice QCD is one of the fields driving the technology of HPC.

5.25.6

4

 Cost ~
qma

L

The 6080-processor 

IBM-SP at NERSC

The 160-core GWU 

QCD Cluster

The 256-processor 

Intel cluster at JLab
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Technical challenges of lattice QCD

• Construction and isolation of states

– operators

– matrix elements

– renormalization factors

• Approaching the real world

– continuum limit (a→ 0, V→ ∞)

– chiral limit (mq → 0)

– dynamical quarks

• Doing things faster 

– faster algorithms 

– faster computers

Lattice QCD is an exact solution of 

QCD in the following sense: All the 

errors (systematic and statistical) are 

controlled and can be removed with 

increasing computing power.
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Some Lattice QCD Collaborations

• USQCD

– MILC

– LHPC

– NPLQCD

– QCD

– polarQCD

– HPQCD

– …

• UKQCD

• CP-PACS

• JLQCD

• ALPHA

• …
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A Few Examples

New Topic
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Example 1: particle mass spectrum 

• CP-PACS, heplat/0206090.

• Lattices: 323x56 to 643x128

• Spacing 0.1 fm to 0.05 fm

• M/ M is 0.75 to 0.4

• 1 to 3 % statistical error 

• 2% systematic error

• Took more than a year of 

running on a dedicated 

computer sustaining 300 

Gflops.

• 1 Gflop = 109 floating-

point operations per second

The computed quenched light hadron spectrum is within 7% of 

the experiment. The remaining discrepancy is attributed to the 

quenched approximation.
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Outlook on hadron spectrum on the lattice

• Smaller quark masses

– quark actions that preserve chiral symmetry (overlap fermions, 

domain-wall, …)

• Chiral extrapolations

– bridge the gap to the physical point (pion 140 MeV)

• Tailor-made operators, higher excited states, and higher 

spin states, hybrid hadrons, multi-quark states

– non-local operators, anisotropic lattices, variational analysis

• Dynamical configurations

– Tera-flop computers
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Example 2: effects of the quenched approximation

U.S. lattice community, PRL92 (2004)

Selected physics 

quantities are 

reproduced to 3% 

level. 

But there’s a lot 

more to do …
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Example 3: the nuclear force from lattice QCD

• Can we understand the nuclear force in terms of quarks and gluons?

• What are the effective degrees of freedom?

• Why meson exchange models of the nuclear force work so well?

• What is the nature of the repulsive core?

• Consistent and rigorous pathway from QCD

Lattice QCD              EFT              Many-Body

Lattice QCD is starting to address these questions.
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“I=2 pi-pi Scattering from Fully-Dynamical Mixed-Action 

Lattice QCD”,  NPLQCD, Phys. Rev. D73 (2006) 054503

• M a2 = -0.0426 +- 0.0006 +- 0.0003 +- 0.0018
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“Nucleon-Nucleon Scattering From Fully-Dynamical 

Lattice QCD”,  NPLQCD, Phys.Rev.Lett. 97 (2006) 012001
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“Hyperon-Nucleon Scattering from Fully-Dynamical 

Lattice QCD”, NPLQCD, hep-lat/0612026

More channels are forthcoming.
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Lattice QCD and Astrophysics: can provide 

crucial input where experiments are not possible

• Supernova  Remnant   ? 

– neutron stars (equation of state)

– blackholes

– kaon condensation?

n n

S , K S , K
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“ to  decay width”, CPPACS, PRD76(2007)094506
si

n
2
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fit to Breit-Wigner form
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“NN Potential from Wave Functions”, S. Aoki, Lattice 2007
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Background-Field 
Calculations

New Topic
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Interaction energy of a hadron in the presence of 

external electromagnetic fields:

, , : 

static bulk 

response

others :

spatial and time 

resolution

Probe of internal 

structure of the 

system in 

increasingly finer 

detail.

Hadron Structure via Background Fields
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Compton Scattering
Low-energy expansion of real Compton scattering 

amplitude on the nucleon

polarizabilities: , , 1 , 2 , 3 , 4 
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Experimental information on nucleon 

polarizabilities 

• Proton electric polarizability (p) is around 

12 in units of 10-4 fm3.

• Proton magnetic polarizability (p) is around 

2 in units of 10-4 fm3.

• n is about the same as p

• n is about the same as p

• Experiments are under way or planned for other 

polarizabilities at electron accelerators around the 

world (HiS, MAXlab, JLab, …)
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Polarizabilities on the Lattice







+−−

−+

−−

−−−=

2

2

2

2

22

11

22

12

1

12

1

2

1

2

1

2

1

2

1

ijMijE

jijiMjijiE

ME

EE

EBBE

BBEE

BEBH









Measure mass shifts in progressively-small external electric 

and magnetic fields, specially designed to isolate them:
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Small field expansion:
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A computational trick
• We generate two sets of quark propagators, one with the 

original set of fields, the other with the fields reversed.

• The mass shift in the presence of small fields is

• At the cost of a factor of two, 

– by taking the average, [m(B) + m(-B)]/2 , we get the leading 

quadratic response with the odd-powered terms eliminated.  

(magnetic polarizability)

– by taking the difference, [m(B) -  m(-B)]/2, we get the 

leading linear response with the even-powered terms eliminated. 

(magnetic moment)

• Our calculation is equivalent to 11 mass spectrum 

calculations.

– 5 original fields, 5 reversed, plus the zero-field to set the baseline

++++=−= 4

4

3

3

2
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Introduction of an external 

electromagnetic field on the lattice

• Minimal coupling in the QCD covariant derivative in 

Euclidean space
 qAgGD ++→

• It suggests multiplying a U(1) phase factor to the links

)exp()(  iagGxU =

• Recall that SU(3) gauge field is introduced by the link 

variables

μμμ )U(iaqAxU exp)(
' =

• This should be done in two places where the Dirac operator 

appears: both in the dynamical gauge generation and quark 

propagator generation
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For Example

• To apply magnetic field B in the z-direction, 

one can choose the 4-vector potential              

then the y-link is modified by a x-dependent 

phase factor

)0,,0,0(),( BxAA =




yy UiqaBxU )exp(→
x

z

• To apply electric field E in the x-direction, one can choose 

the 4-vector potential              

then the x-link is modified by a t-dependent phase factor
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Relevant Literature on External Field Method

• “Lattice quantum-chromodynamics calculation of some baryon magnetic moments”, 

Bernard, Draper, Olynyk, PRL49 (1982) 1076; NPB220 (1983) 508

• “A study of hadron electric polarizability in quenched lattice QCD”, Fiebig, Wilcox, 

Woloshyn, NPB324, 47 (1989)

• “Electric Polarizability of Neutral Hadrons from Lattice QCD”, Christensen, 

Wilcox, Lee, Zhou, PRD72, 034503 (2005)

• “Baryon magnetic moments in the background field method”, Lee, Kelly, Zhou, 

Wilcox, PLB627, 71 (2005)

• “Magnetic polarizability of hadrons from lattice QCD in the background field 

method”, Lee, Zhou, Wilcox, Christensen, PRD73, 034503 (2006)

• “Electricmagnetic and spin polarizabilitites in lattice QCD”, Detmold, Tiburzi, 

Walker-Loud, PRD73 (2006) 114505 

• “Neutron electric dipole moment with external electric field method in lattice QCD”,

Shintani et al, CP-PACS collaboration, PRD75, 034507 (2007)

• “Neutron electric polarizability from unquenched lattice QCD using the background 

field approach”, M. Engelhardt, LHPC collaboration, PRD76, 114502 (2007)
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Computational Demands
• Consider quark propagator generation

yy UiqaBxU )exp(→
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• Fully dynamical: For each value of external field, a new 
dynamical ensemble is needed that couples to the sea u-
quark (q=1/3), d- and s-quark (q=-2/3). Valence quark 
propagator is then computed on the ensembles with 
matching values

• Re-weighting: Perturbative  expansion of action in terms of 
external field 

• U(1) quenched: no field in the sea, only in the valence

– any gauge ensemble can be used to compute valence quark 
propagators. 

 qAgGD ++→
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Magnetic Moments

New Topic
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Magnetic Moment: two methods

Form factor method: GM(Q2=0)

Since the minimum momentum on the lattice is non-zero 
(p=2/L), extrapolation to zero momentum transfer is 
required.

Three-point function calculations

Background field method
direct access

Two-point function calculations

but no Q2 dependence
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Magnetic moment in background field

• For a particle of spin s and mass m in small fields, 

where upper sign  means spin-up and lower sign spin-

down, and 

BmE =

s
m

e
g

2
=

• g factor (magnetic moment in natural magnetons) 

is extracted from
     

)()(

eBs

mEmE
mg

−−−
= −+

• Look for the slope (g-factor) in the mass shift as a function 

of the field
)(eBgm =
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Lattice details
• Standard Wilson gauge action

– 244 lattice, =6.0  (or a ≈ 0.1 fm)

– 150 configurations

• Standard Wilson fermion action

– =0.1515, 0.1525, 0.1535, 0.1540, 0.1545, 0.1555

– Pion mass about 1015, 908, 794, 732,  667,  522 MeV

– Strange quark mass corresponds to =0.1535 (or m~794 MeV)

– Source location (x,y,z,t)=(12,1,1,2)

– Boundary conditions: periodic in y and z, fixed in x and t

• The following 5 dimensionless numbers ≡qBa2 =+0.00036, -0.00072, 

+0.00144, -0.00288, +0.00576 correspond to 4 small B fields

eBa2 = -0.00108, 0.00216, -0.00432, 0.00864 for both u and d (or s) quarks.

– Small in the sense that the mass shift is only a fraction of the proton mass: 

B/m ~ 1 to 5% at the smallest pion mass. In physical units, B ~ 1013 Tesla.

x

z

B
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Proton mass shifts

• We use the 2 smallest fields to fit the line.

)(eBgm =
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Neutron mass shifts
)(eBgm =
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Proton and neutron magnetic moments
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Chiral Extrapolation

• To one meson loop, PT predicts

but only applicable in small mass region.
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• Encapsulating form (Leinweber, Lu and Thomas, 

PRD60 (1999) 034014)

• For small mass,

• For large mass,

Pade ansatz
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Magnetic Moments in ChPT

• Leinweber, Lu, Thomas, PRD60 (1999) 034014

• Hackett-Jones, Leinweber, Thomas, PLB489 (2000) 143

• Leinweber, Thomas, Young, PRL86 (2001) 5011

• Borasoy, Lewis, Ouimet, PRD65 (2002) 114023

• Arndt, Tiburzi, PRD68 (2003) 114503

• Beane, Savage, PRD68 (2003) 114502

• Hemmert, Procura, Weise, NPA721 (2003) 938

• Young, Leinweber, Thomas, hep-lat/0311038

• Young, Leinweber, Thomas, hep-lat/0406001

• Leinweber, PRD69 (2004) 014005
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Octet Sigma magnetic moments
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Delta magnetic moments
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Proton and + magnetic moments

Curvatures expected from  ChPT.
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Magnetic moments for other hadrons

F.X. Lee, R. Kelly, L. Zhou, W. Wilcox, Phys. Lett. B 627, 71 (2005) 
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Vector Meson Magnetic Moment

Form factor method

hep-lat/0703014, Adelaide groupBackground field method

hep-lat/0710.2329,  polarQCD

Also agrees with that from the Charge Overlap Method by 

W. Andersen and W. Wilcox, Annals Phys. 255, 34 (1997)
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K*0 Meson Magnetic Moment

Form factor methodBackground field method

We also computed axial and tensor mesons. The 

results are in preparation for a publication.
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Polarizabilities

New Topic
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Polarizability: a quantum mechanical example

• Hydrogen atom placed in static electric and 

magnetic fields

– 2nd order Stark effect: electric polarizability

– 2nd order Zeeman effect: magnetic polarizability
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Neutron Mass Shift in Electric Field
2

2

1
Em −=
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Electric Polarizability of neutron
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Electric Polarizabilities of Neutral Particles

Christensen, Wilcox, Lee, Zhou, 

Phys.Rev. D72 (2005) 034503
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Neutron Mass Shifts in Magnetic Field 2

2

1
Bm −=



NNPS08, GWU,  page 65

Magnetic Polarizability of the Nucleon
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Magnetic Polarizabilities: baryon octet

F.X. Lee, L. Zhou, W. Wilcox, J. Christensen, Phys. Rev. D73 (2006) 034503
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Magnetic Polarizabilities: baryon decuplet

PRD73 (2006) 034503



NNPS08, GWU,  page 68

What’s Next ?
Compute higher-order polarizabilities

Need non-uniform, sourceless fields

For example, to extract E2 and E2, choose

For example, to extract M2 and M2, choose

 and  must be re-measured and subtracted

The path to unquenched calculations

Use CP-PACS 2+1 flavor dynamical gauge ensembles (Iwasaki glue + 

clover). But still U(1) quenched

Introduce U(1) fields in the dynamical gauge generation 
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Beta-decay of proton in magnetic field

• At sufficiently large B 

fields (1016 Tesla), proton 

can become heavier than 

neutron, allowing the ‘-

decay’ of the proton:

BmE ppp

++ += 

BmE nnn

−− += 

B

Energy

B0

evenp ++→ +

evepn ++→ −

• As compared to the natural neutron 

-decay:

Such process can take place in stars where extremely strong magnetic 

field exists.
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Long-term Goal of Lattice QCD
• To build all strong-interaction physics on the 

foundation of QCD.
– mass spectrum

– decay rates

– form factors and transitions

– electromagnetic properties

– strangeness content of the nucleon

– the nuclear force

– matter at finite temperature and density

– …

• Then tell us how the physical world works 
from this point of view
– “the universe from scratch”


