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The Universe
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Figure 1. The mass composition of the Universe, from http://map.gsfc.nasa.gov/media/080998/080998 Universe Content



http://map.gsfc.nasa.gov/media/080998/080998_Universe_ContentL.png

Astropa rticle thSiCS is summarized neatly by the study

Connecting Quarks with the Cosmos. Eleven Science Questions for the New Century

1. What is the dark matter? <SNOLAB

2. What is the nature of the dark energy?

3. How did the universe begin? <«SNOLAB

4. Did Einstein have the last word on gravity?

5. What are the masses of the neutrinos, and how have they shaped
the evolution of the universe? €« SNOLAB

6. How do cosmic accelerators work and what are they accelerating?

7. Are protons unstable?

8. Are there new states of matter at exceedingly high density and temperature?

9. Are there additional spacetime dimensions?

10. How were the elements from iron to uranium made? <« SNOLAB

11. Is a new theory of matter and light needed at the highest energies?

specific element of the third question is:

3b. Why is the Universe made of matter and not antimatter and how did this

asymmetry arise? <« SNOLAB

d a related element of the tenth question is:

10b. What role do neutrinos play in supernova explosions and how does this
process affect the synthesis of heavy elements? €« SNOLAB




Two main thrusts for SNOLAB

science

What is the nature of Dark Matter?
m Direct dark matter searches

What are the character and interactions of

neutrinos, and

how do they affect

cosmology and astrophysics?

m Double beta ¢

own antipartic
= Solar neutrino

ecay (mass, are neutrinos their
es, leptogenesis?)
interactions
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SNgf &

SNOLAB Underground Facility

3,000m? / 30,000 m3 experimental halls
class 2000 clean rooms. Intended to
house 3 major experiments (10-20m) +
2-3 medium scale (5m)

o f e Flat-overburdan sites
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DEAP/Clean- 3600 Detector

600 kg LAr, 1000 kg

fiducial
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Backgrounds and the design

Liquid circulation: to remove LAr
contamination (no suspended particles >
8 microns)

Acrylic vessel: allows radon isolation,
resurfacing (need factor of ~1000 over
“normal surfaces”)

Large FV, large light collection, 100% TPB,
reflector on AV: to remove remaining
surface recoils and for PSD

Acrylic shield for neutrons
Water shield/veto for muons




DEAP - Dark matter Experiment with Argon and Pulse-shape-discrimination
M.G.Boulay and A.Hime, Astroparticle Physics 25, 179 (2006)
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WIMP Sensitivity with argon
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Sudbury Neutrino
Observatory

1000 tonnes D,0

Support Structure
for 9500 PMTs,
60% coverage

12 m Diameter
Acrylic Vessel

1700 tonnes Inner
Shielding H,O

5300 tonnes Outer
Shield H,O

Urylon Liner and
Radon Seal




SNO S

= Ended data taking 28 Nov 2006
Most heavy water returned June 2007
= Finish decommissioning end of 2007




Fill with Liquid Scintillator

N

SNO plus liquid scintillator physics
orogram
= double beta decay

= pep and CNO low energy solar neutrinos

tests the neutrino-matter interaction, sensitive to
new physics

® geo-neutrinos
m 240 km baseline reactor neutrino oscillations
m supernova neutrinos o . e ozrresn canson

Linear Alkylbenzene
‘c.m-.. (‘_ ﬂﬂﬂﬂﬂ en




There has been remarkable progress in understanding neutrinos

U , U, i »
f., a Ya Ya UMNSP Matrix Additional CP Phases
U=lUu Vi U for Majorana Neutrinos
lll;"Ir'rl Ur? UT3
1 0 0 cost,, 0 e sin 6., cosfl, sinf,
=10 cosf,, sinf,;|x 0 1 0 x|—sinb, cosl,
0 -sinf,, cosB,;) |-e“*sinf, O cosf, 0 0
Boq ~ 457 tanZe,, < 0.03 at 90% CL 8,5, ~32°

m?

e have also measured

Values of 0, & Op?
9 2 13 CP
Am;, and Am,,

SR CP Violation in Neutrino Sector?

Leptogenesis & Matter-Antimatter

0 Asymmetry in the Universe?
eutrinos have emerged as among Are Neutrinos their own
e most effective probes into the nature of Antiparticles?

igher unification, its symmetries and mass

ales 22



Majorana Neutrino Mass & GUT Scale

charged leptons

|
neutrinos quarks
- & -—
Increasing 1100000 mass of 100,000
Mass: X mass of alactron X mass of
alectron alactron

m, < My, My

E mp, ~ 200 GeV
Ex -

m, ~0.01 -0.1eV %
Seesaw Mechanism\

M, ~ 1015 GeV !
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] _BB Decay

2 2
M()v mv

We learn M), from nuclear physics

== Two Neutrino Spectrum I —
Ov Ov

== Zero Neutrino Spectrum
1% resolution

r(2v)=100* T(0v)

7>

I T
0.0 0.5 1.0 1.5
Sum Energy for the Two Electrons (MeV)

Endpoint
Energy 24
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A, EXperimental Issues for double beta decay

We

Decrease and understand backgrounds to 1
event/region of interest/detector- running time

Need good energy resolution to separate zero-
— neutrino and 2-neutrino modes.

Increase mass to 1 tonne and ultimately 100 tonne.

1 |||IIII|

Studies of the field (NUSAG in the US, for
example) recommend a phased approach, in which
mass increases as larger masses are ruled out and
technology improves. There is no proven, scalable
technology.
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SNO+ Double Beta Decay

SNO+ with Nd-loaded liquid scintillator
m ...also called SNO++

0.1% Nd in 1000 tons of scintillator
= with natural Nd corresponds to 56 kg of 1°9Nd isotope

sensitivity below 100 meV with natural Nd

meters of ultra-low background self-shielding
against gammas and neutrons
= |leads to well-defined background model

iquid detector allows for additional in-situ
purification

possibility to enrich neodymium at French AVLIS
facility %




What Do Scintillators Offer?

“economical” way to build a detector with a large
amount of isotope

several isotopes can be made into (or put in) a
scintillator

ultra-low background environment can be
achieved (e.g. phototubes stand off from the
scintillator, self-shielding of fiducial volume)
with a liquid scintillator, possibility to purify in-
situ to further reduce backgrounds
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Why 15/Nd?

3.37 MeV endpoint (2" highest of all BB isotopes)
m above most backgrounds from natural radioactivity
largest phase space factor of all B3 isotopes

m factor of 33 greater compared with 76Ge

m for the same effective Majorana neutrino mass, the
OvBp rate in 1°ONd is the fastest

cost of NdCl; is $86,000 for 1 ton (not expensive)

upcoming experiments use Ge, Xe, Te; we can
deploy a large and comparable amount of Nd

28



How Does ""Nd Compare?

56 kg of 1°9Nd is equivalent to:
considering only the phase space factor

including QRPA matrix element
calculations

|

|

- thanks L. Simard and F. Piguemal
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OVBP Signal for <m,> = 0.150 eV

Ov: 1000 events per The Simulated Spectrum of Double Beta Decay Events

year with 1% natural l
Nd-loaded liquid J’
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56 kg of °Nd and <m > = 100

meV

Simulated SNO+ Energy Spectrum
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6.4% FWHM at Q-value
3 years livetime

U, Th at Borexino levels
5o sensitivity

note: the dominant
background is 8B solar
neutrinos!

212pp-208T| tag (3 min)
might be used to veto
208T| backgrounds; 212Bi-
212Ppg (300 ns) events

constrain the amount of
208T]|



Neutrino Mass Sensitivity

| The D.B.D. Limit as a Function of Livetime |
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UNJ Scintillator Properties

0.8

— Nd-LAB, 1.45% Nd, 1 year
— Md-LABE, 1.45% Nd

id sl_c_i_vniiﬁaﬁﬁ?%ﬁfﬁical pJo rties
rties studied
achlevable with our/purification
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stable Nd-loaded %fq

500
ave been de
co-precipit
M=t ors of 10> re

@ or Th and 10‘ 200

s ea seans

‘ al"e esan ) P AN N SN VRPN SR R IR I
0.2 04 06 08 1 1.2 14 16 18 2 2.2

Bﬂ 2N t&lﬁ[e tr%lh qu Nd Concentration (%)

an Uicl 1 euuLes |||||JL}I"ItIeS A (nm)

33

400

——

300

il

Q

0)]

o

B

= [

O i

m.

':"

NHits.

(=]

8
||||||\|||||||||||||||||||||'_|'T"|||||

HH

(=]



Nd-150 Consortium

SuperNEMO and SNO+, MOON and DCBA
are supporting efforts to maintain an
existing French AVLIS facility that is
capable of making 100’s of kg of enriched
Nd

m a facility that enriched 204 kg of U (from 0.7%
to 2.5%) in several hundred hours

34




2000-2003 Program : Menphis facility

Evaporator

Dye laser chain
Yag laser

Copper vapor laser

e
#
, 4

Design : 2001
Building : 2002

15 test : early 2003
15 full scale exp. : june 2003
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AVLIS for °YNd is Known

Development of the laser isotope separation method (AVLIS)
for obtaining weight amounts of highly enriched 1S0Nd isotope

A_P. Babichev, [LS. Gnigonev| A.l. Gngonev, A.P. Dorovskn, A.B. D'yachkov, 5.K. Kovalevich,
V.A. Kochetov, V.A. Kumnetsov, V.P. Labozm, A.V. Matrakhov, .M. Mironov, S.A. Nikulin,
A V. Pesnya, N.I. Timofeev, V.A. Firsov, G.0. Tsvetkov, G.G. Shatalova
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SNO+ Nd: Summary

good sensitivity and very timely

homogeneous liquid, well defined
background model

= large volume gives self-shielding

= Q-value is above most backgrounds
thus “insensitive” to internal radon backgrounds
thus insensitive to “external” backgrounds (2.6 MeV

Y)
Th, Ra purification techniques are effective

huge amounts of isotope, thus high
statisir:]ics, can work for double beta decay
searc

® requires exquisite calibration and knowledge of
detector response .




Low Energy Solar Neutrinos

108

complete our o T
understanding of tor B
ne{itrinps from the Sun ™ = o ;
pep, CNO, “Be, pp ‘E’W'j; e[ - 1 :

ep R e chan S T
| . | ° / i
2H+p—>3He+7y ::r ""TH !

1
0.1
| Neutrine Energy in Me¥

\ \
e+3He—>4He+2pJ ‘He +p > *He + e* + v,

SHe + “He — "Be + v CNO Cycle
|
v v 2C+p—>BN+y BN BC+e+v,
Be+e > 7Li+y+v, Be+p-—>8B+y 13C + p — N +
\ }
7Li+p—)(1+a 8B_)2a+e++ve 14N+p_)150+,y 150—)15N+e+-§8\/e
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Ga, Cl and SNO Data — Distilled

!
|

deduce the survival probability 1 e
high energy: directly from SNO
medium energy: Cl minus high
low energy: Ga minus high, medium

08 . 4
i
|
|

we observe that the survival
probability for solar neutrinos
versus energy is not yet
accurately determined from
existing experiments

02 r ) -

transition between vacuum and matter o o
oscillations in the Sun has not been 0.1 1 10
accurately determined E (MeV)

there is even some tension in existing low and medium data...
39



Neutrino-Matter Interaction

1.0
best-fit oscillation a :
parameters suggest 0.8 - :
MSW occurs ;
0.6 5 B <ens20,,
Als - 1 - i51'71229]2
but we have no direct .. \ B> 7
evidence of MSW B,
= day-night effect not 0.2 :
Observed ~ from Pefia-Garay E
m no spectral distortion for oo
8B v's Ev

testing the vacuum-

. MELEr fransition,is
N, SaRsitiye.tRREW Phy

Eis 1-2 MeV

Hamiltonian for neutrino propagation in the Sun



New Physics

good fit

MSW is linear in G and
limits from v-scattering
experiments (« g2)
aren’t that restrictive
oscillation solutions
with NSI can fit
existing solar and
atmospheric neutrino
data...NSI not currently
constrained

new pep solar v data
would reveal NSI

ED_T_ T T L B B L T T
Al »

with NSI

- ﬂMA—IpEpE
Lida—| *B —

[ pp e pep ]

DFE-— 1 1 IIIIII 1 1 IIIIIII I__

10 1 10
£,/ Mev

pep solar neutrinos are
at the “sweet spot” to
test for new physics

41

Friedland, Lunardini, Pena-Garay, hep-ph/0402266



Mass-Varying Neutrinos

cosmological connection: mass scale of neutrinos
and the mass scale of dark energy are similar

postulating a scalar field and neutrino coupling
results in neutrinos whose mass varies with the

background field (e.g. of other neutrinos
Fardon, Nelson, Weiner, hep-ph/0309800

solar neutrinos affected?
pep v: a sensitive probe

T

T~
I
e
l"

WiaVaN
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Barger, Huber, Marfatia, hep-ph/0502196 ¢ 5 o -
E, [MeV|




The Standard Solar Model

Predicts 8B neutrino fluxes well, but three
experimental issues:

Bahcall, Pinsonneault, Basu,

-Metallicity/opacity/helioseismology doesn’t agree THE ASTROPHYSICAL JOURNAL,
well 555:990E1012, 2001 July 10

1.4 T T T T T

-"Weak young sun paradox” Lo{)/1, vs Age
-Lithium depleted by factor of 160

1.1

| Lo{t)x[Ro{today)/Ry(t) ]2

F 1
=
£ o8
0.8
0.7 §
today
0.8 T 4
U-ﬁ 1 1 | 1 1
] 1 2 3 4 5 [} T &

Solar Age/{10° yr)

Fis. 2—MNormalized solar luminesity, Lg(t)/Lg(teday), vs. solar age
for the standard solar model (solid curve) and for three *deficient ™ solar
models: the No Diffusion model (dotted curve), the S,, = Omodel (shart-
dashed curve), and the Mixed model (long-dashed curve). The luminosity
evolution of the Sun is essentially the same in all solar models we have
investigated, including deficient solar medels. The rms deviation of the
deviant models from the standard selar model luminosity is only 1% over
the history of the Sun from the zero-age main sequence to the current
epoch (sze text for more details). The product L ()R (t)”** varies by
+4% over the entire period from the zero-age main sequence to a solar age
of 8 x 107 yr, while the solar luminosity itself varies by slightly more than a
factor of 2 during this period. In the period between 4 x 107 and § x 10°
1, the relation L(t) oo Ry(f) is satisfied to +0.5%. The solar luminosity
has increased by 48% from the zero-age main sequence to the present
epoch. The present age of the Sun is indicated by an arrow at 4.59 x 10° yr.
[See the electronic edition of the Jowrnal for a color ver sion of this figure.]




Why pep Solar Neutrinos?

, stat + syst + SSM errors estimated

SSM pep flux:
uncertainty £1.5%

nown source
nown cross section (v-e scattering)

measuring the rate gives the
survival

robability

precision test

for neutrino physics with low
energy solar neutrinos, have to

achieve precision similar to SNO

/
| Solar Neutllﬁno Survival Probability |

or better...it's no longer sufficient

to just detect the neutrinos

pep solar neutrinos:

E, = 1.44 MeV

...are at the right energy to
search for new physics

Y= /

0.55[- Am?2 =8.0 x 107° eV?

05 tan20 = 0.45

0.45

0.4

0.35

0.3 T

0255 SNO CC/NC

0_2; |III|III|III|III|III|III|III|III|III

0 |2 4 6 8 10 12 14 16 18 20
Sat Mar 19 17:13:482005 E, [MeV]
observing the rise confirms

pepv  MSW and our understanding

of solar neutrinos
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"C Cosmogenic Background

102 Estimated background after statistical subtraction -
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these plots from the KamLAND proposal muon rate in
KamLAND: 26,000 d-1

compared with
SNO: 70 d1

Solar v, recoil spectra (SSM)
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Requirements for a Liquid Scintillator
Dep Solar v Detector

depth
m to reduce/eliminate 11C background

good light output from the scintillator

m studied the effect of varying the energy
resolution; found not a steep dependence

radiopurity
m control of Rn exposure because of 210Bj
m eliminate 49K internal contamination
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Solar Signals with Backgrounds

| Simulated SNO+ Energy Spectrum

= Total

100

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Energy (MeV)
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SNO+ Solar Neutrino Projected
Capability

with backgrounds at KamLAND levels
= U, Th achieved
m 210Pp and 49K post-purification KamLAND targets

m external y backgrounds
o calculated based upon SNO external activities
o fiducial volume 450 cm

pep uncertainties
m <+5% statistical (signal extraction from background)
m 3% systematic

m +1.5% SSM

m e.d. it would be a measurement of the survival
probability at 1.44 MeV of 0.55 £+ 0.03
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pep v and 0,

solar neutrinos are
complementary to
long baseline and
reactor experiments
for 6,5

hypothetical 5%
stat. 3% syst. 1.5%
SSM measurement

has discriminating
power for 0,5

08

0.2

0.1

E (MeV)

10




Events / 10% proton-year / MeV

Geo-Neutrino Signal

antineutrino events v, + p — €* + n:

« KamLAND: 33 events per year (1000 tons CH,) / 142 events reactor
* SNO+: 44 events per year (1000 tons CH,) / 38 events reactor
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Positron Deposited Energy (MeV)

SNO+ geo-neutrinos and reactor background

Anti-neutino eneragy, E, (MeV)

KamLAND geo-neutrino ]
detection...July 28, 2005 in Nature




Reactor Neutrino Oscillations

| Variation around Solar Global + KamLAND @ Sudbury |
-------- (AMY, sin“20) = (7.6x10°, 0.857)
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SN Neutrino Detection in SNO+

~ SNO+ vs. Super-Kamiokande

CC: T.+p—n+et (260) 41% V. +p—n+et (7000) 91%
B (ve, e)12N (30) 4.7%

120(7,, e+)12B (10) 1.5%

NC: 2C(v,, v, )12C*  (60) 9.3% YO (vy, vy ) 18O (410) 5%

v, +1— 1, +p (270) 42%

ES: lVyte—y; 1€ (12)1.9% Ve +€— 1y +€  (300) 4%



Summary Points

diverse and exciting neutrino physics

SNO+ is the most interesting solar neutrino
experiment to be done post-SNO

SNO+ geo-neutrinos will be a Nature publication
of considerable popular science interest...for free!

SNO+ reactor neutrino “oscillation dip moves as
L/E” will be an easy PRL publication...for free!

m SNO+ includes KamLAND and Borexino members and
experience

we have proven SNO operations capability
much of the development activity is

straightforward engineering; nothing all that 53
exotic is being proposed




SN O+ Schedule and Milestones
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http://www.ualberta.ca/
http://www.bnl.gov/
http://www.inl.gov/
http://www.isu.edu/
http://www.laurentian.ca/
http://www.lip.pt/EN/index.php
http://www.ox.ac.uk/
http://www.upenn.edu/
http://www.queensu.ca/
http://www.snolab.ca/
http://www.sussex.ac.uk/
http://www.sussex.ac.uk/
http://www.washington.edu/
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