Neutrinos and Big Bang Nucleosynthesis

Expansion of the Universe

Edwin Hubble

MAP990404

Expansion of the Universe

Universe remains homogeneous and isotropic during expansion Any length scale $\ell(t) = R(t)\ell_0$

$$\dot{\ell} = \dot{R}\ell_0 = \frac{R}{R}\ell(t)$$

Hubble's constant
$$H(t) = \frac{\dot{R}}{R}$$

units
$$\frac{\text{km/s}}{\text{Megaparsec(Mpc)}}$$

1 pc = 3.09×10^{13} km ≈ 3.26 light years

Observations
$$\frac{50 \text{km/s}}{\text{Mpc}} \le H \le \frac{100 \text{km/s}}{\text{Mpc}}$$

 $H^{-1} = 9.78 \times 10^9 \text{ years}$ h = H/100 km s⁻¹ Mpc⁻¹

 $E < 0 \Rightarrow$ the mass m is bound and cannot escape to infinity $E > 0 \Rightarrow$ expansion can continue $E = 0 \Rightarrow$ critical density, ρ_c

$$\rho_c = \frac{H^2}{G} \frac{3}{8\pi} = \left(\frac{H}{\frac{75 \text{ km./s}}{\text{Mpc.}}}\right)^2 \times 1.05 \times 10^{-29} \text{g/cm}^3$$

Planck time
$$\tau_p = \frac{\hbar}{m_p c^2} \sim 10^{-43} s$$

$$\rho_c = \left(\frac{3}{8\pi}\right) m_p^2 H^2$$

 $\rho_{c}c^{2}$ = 9.45×10⁻⁹ ergs/cm³

Hence if $\rho > \rho_c$ the universe will begin to contract

From WMAP

Elementary Statistical Mechanics

Particle Number
$$N = g \frac{V}{(2\pi)^3} \int d^3 \mathbf{p} \left[\frac{1}{\exp(E_{\mathbf{p}} - \mu) \pm 1} \right]$$

Energy
$$E = g \frac{V}{(2\pi)^3} \int d^3 \mathbf{p} \left[\frac{E_{\mathbf{p}}}{\exp(E_{\mathbf{p}} - \mu) \pm 1} \right]$$

- + fermions
- bosons

Relativistic Limit (T>>µ, T>>m)

Cosmic microwave background photons (CMBR)

Temperature: T=2.7°K, g=2, two polarization components

Number density: N/V = $(2/\pi^2)$ 1.202 T³ ~ 398 photons/cm³

Energy density: $E/V = 2 (\pi^2/30) T^4 \sim 5 \times 10^{-13} ergs/cm^3$

 Ω_{γ} = (ρ_{γ} / ρ_{c}) ~ 10⁻⁴ , does not close the universe

Recall that $H^2 \sim \rho$

Small R, Radiation-dominated universe (very early Universe)

Large R, Matter-dominated universe (later Universe)

Species will remain in thermal equilibrium as long as their interaction rate exceeds the expansion rate

$$n\langle \sigma E\rangle \gg H = \frac{\dot{R}}{R}$$

Thermal history of the Universe

kT less than	Particles in equilibrium	g s
1 eV	γ	2
m _e c ²	γ, e ±	11/2
m _μ c ²	$\gamma, \nu_e, \nu_\mu, \nu_\tau, e^{\pm}$	43/4
m _π c ²	$\gamma, \nu_e, \nu_\mu, \nu_\tau, e^{\pm}, \mu^{\pm}$	57/4
Λ_{QCD}		69/4
m _s c ²	γ,ν _e ,ν _µ ,ν _τ , e [±] , μ [±] , u, ū, d, đ, g	205/4

The cosmic microwave background Radiation's "surface of last scatter" is analogous to the light coming through the clouds to our eye on a cloudy day.

We can only see the surface of the cloud where light was last scattered

TEMP

⁴He equilibrium abundance

 Y_{α} depends on $T_{\text{freeze-out}}$ which in turn depends on g_s

Neutrino counting!

$$\delta Y_{\alpha} \propto \delta g_{s} \propto \delta N_{v}$$

Neutrino decoupling

dS = dE/T \Rightarrow entropy per unit volume ~ $g_s T^3$

Before e^+e^- annihilation: $g_s^{(b)} = 2 + (7/8) \times 4 = 11/2$

After e^+e^- annihilation: $g_s^{(a)} = 2$

Entropy conservation: $g_{before} T^{3}_{before} = g_{after} T^{3}_{after}$

$$T_{after} = (11/4)^{1/3} T_{before}$$

 $T_{\gamma} = 2.7 \,^{\circ}K$
 $T_{\nu} = 1.9 \,^{\circ}K$

Flux on earth of neutrinos from various sources, in function of energy

Probing the Cosmic Microwave Background Radiation (CMBR)

WMAP results:

Dark Blue = -200 μ K Red = +200 μ K

In the matter-dominated epoch massive neutrinos cluster on very large scales, but free-stream out of smaller scale fluctuations. This suppresses the amplitude of the fluctuations.

$$\Omega_{v} \sim \left\{ \frac{m_{v}}{92 \text{ eV}} \right\} \left\{ \frac{T\gamma}{2.75 \text{ K}} \right\}^{3}$$

Combination of several experiments:

Ω_v h² < 0.0072 (95% C.L.)

Cosmological Implications

Atmospheric neutrinos: $\Delta m_{23}^2 \approx 2.0 \times 10^{-3} \text{ eV}^2$.: One neutrino mass > 0.04 eV

SNO + KamLAND: $\Delta m_{12}^2 \approx 7.1 \times 10^{-5} \text{ eV}^2$ \therefore One neutrino mass > 0.008 eV

Limits on " v_e mass" give: $m(v_{1,2,3}) < 2.2 \text{ eV}$

 Σ neutrino masses: 0.048 < m_1+m_2+m_3 < 6.6 eV 0.001 < $\Omega_{\rm v} < 0.13$

Stay tuned...

Summary of Methods to Obtain Neutrino Masses

Single beta decay	$\Sigma_{t} \mathbf{m}_{i}^{2} \mathbf{U}_{ei} ^{2}$	Sensitivity 0.2 eV
Double beta decay	$m_{\beta\beta} = \Sigma_{\iota} m_{i} U_{ei} ^{2} \epsilon_{i} $ $\epsilon_{i} = Majorana$ phases	Sensitivity 0.01 eV
Neutrino oscillations	$\delta m^2 = m_1^2 - m_2^2$	Observed ~ 10 ⁻⁵ eV ²
Cosmology	$\Omega_{v} \rightarrow \Sigma_{i} \mathbf{m}_{i}$	Observed ~0.1 eV

Only double beta decay is sensitive to Majorana nature.

Where do we stand?

A perspective

Fundamental discoveries are recently made

- SNO, 2002: Discovery of the non-electron neutrino component of the solar flux (⇒ neutrino oscillations); measurement of the total solar neutrino flux.
- SuperK, 1998: Discovery of atmospheric neutrino flux variations (=> neutrino oscillations).
- Baksan, Kamioka, IMB, 1987: Detection of neutrinos from Supernova 1987A (neutrino flux consistent with neutron star binding energy, cooling time is near that expected).
- Irvine, 1987: Detection of two-neutrino double-beta decay.
- MSW, 1986: Recognition that matter enhances neutrino oscillations.

...that broadly impact physics, astronomy, and cosmology

- Massive neutrinos: Beyond the Standard Model of elementary particles.
- Neutrino mixing angles are close to maximal: Impacts on leptogenesis; explosion mechanism and nucleosynthesis in core-collapse supernovae.
- Total solar neutrino flux is measured: The theory of main sequence stellar evolution is verified.
- Direct neutrino mass measurements: Neutrino component of dark matter. WMAP put significant limits on $\Omega_{\rm v}$

Backup slides

Applications of v-nucleus interactions

Theory and applications of Detector Response: Detectors for solar, atmospheric, accelerator, and reactor neutrinos.

Input into astrophysics: Neutrino reactions in corecollapse supernovae, supernova nucleosynthesis, gamma-ray burst nucleosynthesis.

Tests of nuclear structure calculations: Shell Model, effective field theories.

Fundamental physics at low energies: Determining proton strange form factors.

Neutrino-nucleus cross-sections

Low Energy (0 < E <~200 MeV)	Non-relativistic many-body theories (Shell Model, RPA); effective field theory	Solar, reactor, and supernova neutrinos; beam-stops
Intermediate E (~200 MeV < E < ~200 GeV)	Relativistic; hadronic ⇒ partonic d.o.f, superscaling ideas; quasielastic and resonance regime	Atmospheric neutrinos MINERVA, SciBooNE, etc.
High Energy (~200 GeV < E < EeV)	Deep-inelastic scattering, partonic d.o.f., x-scaling	Atmospheric v's, neutrinos from point sources Icecube, Antares

We need to know the response of the nucleus to neutrinos with a wide range of energies.

What happens when a 50 MeV neutrino hits a nucleus? Where is the strength? What is g_A/g_V ?

As the incoming neutrino energy increases, the contribution of the states which are not well-known increase, including first- and even second-forbidden transitions. At the lowest energies Shell Model is the best approach. Gamow-Teller strength is quenched in the Shell Model:

Nucleus	¹²⁸ Sn	¹³⁰ Sn	¹³² Sb	¹³² Te	¹³³ Te
Transition	$0^+ ightarrow 1^+$	$0^+ ightarrow 1^+$	$4^+ \rightarrow 3, 4, 5^+$	$0^+ ightarrow 1^+$	$\frac{3}{2}^+ \rightarrow \frac{1}{2}, \frac{3}{2}, \frac{5}{2}^+$
$T_{1/2}$ exp. $T_{1/2}$ exp. (0.74)	59.07m	3.72m	2.79m 1.56m	3.2d	12.5m
Renorm.	0.54	0.6	0.55	0.54	0.53

Beta-decay rates from Nowacki

At higher energies where the rate is sensitive to total strength and the energy of giant resonances there is a tendency to use RPA.

However...

Using Shell Model to calculate neutrino-nucleus cross-sections

one needs to use effective operators when one employs effective Hamiltonians. However in most calculations the systematics of BE(2) transitions are characterized by effective charges and Gamow-Teller distributions by quenching. Different calculations disagree by as much as 30% from from one another. To understand neutrino-nucleus collisions at energies up to 60 MeV we need 1) A more consistent treatment of the Shell Model in a bigger basis spaces; and 2) More data. We should also be careful with the QRPA calculations.

We should also question the effective interactions utilized. For example, Otsuka, et al. find that inclusion of a tensor force in the Shell Model may increase the Gamow-Teller strength distribution at higher energies.

This is bread and butter nuclear structure physics!

Effective Field theory Approach to low-energy neutrinodeuteron scattering Butler, Chen

Below the pion threshold ${}^{3}S_{1} \rightarrow {}^{3}S_{0}$ transition dominates and one only needs the coefficient of the two-body counter term, L_{1A} (isovector two-body axial current)

Note that an observation of $0\nu\beta\beta$ double beta decay does not necessarily imply the existence of a light Majorana neutrino!

 $A_L \sim m_{\beta\beta}$ $A_H \sim M_W^4 / \Lambda^5$ for $\Lambda \sim 1$ TeV both mechanisms may contribute equally.

Lepton Flavor violation involving charged leptons may provide a "diagnostic tool" for establishing the mechanism of $0\nu\beta\beta$ decay

Ramsey-Musolf & Vogel

Exchange of a **light** neutrino, only left-handed currents

Exchange of a **heavy** neutrino, short range hadron physics at play

Exchange of a light or heavy neutrino and one **right-handed** \mathbf{W}_R

Exchange of **supersymmetric** particles, R-symmetry violated

There is a big spread in the matrix elements calculated using QRPA

In QRPA the dependence of the $0\nu\beta$ β matrix element on s.p. states is reduced if the coupling strength g_{pp} is adjusted to the $2\nu\beta\beta$ rate:

Most of this spread can be traced to different choices of the initial and final states, choice of the value of the parameter g_{pp} , and corrections for the short-range nuclear repulsion.

 $0\nu\beta\beta$ matrix elements