Neutrinos and Big Bang Nucleosynthesis

Expansion of the Universe

Edwin Hubble

MAP990404

Expansion of the Universe

Universe remains homogeneous and isotropic during expansion Any length scale $\ell(t) = R(t)\ell_0$

$$
\dot{\ell} = \dot{R}\ell_0 = \frac{R}{R}\ell(t)
$$

$$
\fbox{Hubble's constant} \qquad H(t) = \frac{\dot{R}}{R}
$$

$$
\frac{\text{km/s}}{\text{Meganarsec(Mpc)}}
$$

1 pc = 3.09×10^{13} km \approx 3.26 light years

$$
\fbox{Observations} \quad \frac{50 \text{km/s}}{\text{Mpc}} \leq H \leq \frac{100 \text{km/s}}{\text{Mpc}}
$$

 $H^{-1} = 9.78 \times 10^9$ years h = H/100 km s⁻¹ Mpc⁻¹

 $\mathsf E\cdot\mathsf O\Rightarrow$ the mass m is bound and cannot escape to infinity $E > 0 \Rightarrow$ expansion can continue $\mathsf{E} = \mathsf{0} \Rightarrow$ critical density, ρ_c

$$
\rho_c = \frac{H^2}{G} \frac{3}{8\pi} = \left(\frac{H}{\frac{75 \text{ km/s}}{\text{Mpc}}} \right)^2 \times 1.05 \times 10^{-29} \text{g/cm}^3
$$

$$
\frac{\text{Planck time}}{m_p c^2} \approx 10^{-43} s
$$

$$
\rho_c = \left(\frac{3}{8\pi}\right) m_p^2 H^2
$$

 ρ_c c² = 9.45×10⁻⁹ ergs/cm³

Hence if ρ > ρ_c the universe will begin to contract

From WMAP

Elementary Statistical Mechanics

$$
\text{Particle Number} \quad N = g \frac{V}{(2\pi)^3} \int d^3 \mathbf{p} \left[\frac{1}{\exp{(E_\mathbf{p} - \mu)} \pm 1} \right]
$$

$$
\text{Energy} \hspace{1cm} E = g \frac{V}{(2\pi)^3} \int d^3{\bf p} \left[\frac{E_{\bf p}}{\exp \left(E_{\bf p} - \mu \right) \pm 1} \right]
$$

$$
E_p = (p^2 + m^2)^{1/2}
$$

$$
\mu
$$
: Chemical potential
g: Spin degrees of freedom

- + fermions
- bosons

Relativistic Limit (T>> ^μ, T>>m)

Cosmic microwave background photons (CMBR)

Temperature: T=2.7°K, g=2, two polarization components

Number density: N/V = (2/ π^2) 1.202 T 3 ~ 398 photons/cm 3

Energy density: E/V = 2 (π^2 /30) T⁴ ~ 5 x 10⁻¹³ ergs/cm³

 $\Omega_{_{\gamma}}$ = ($\rho_{_{\gamma}}$ / ρ_{c}) ~ 10-4 , does not close the universe

Recall that $H^2 \sim \rho$

Small R, Radiation-dominated universe

Large R, Matter-dominated universe

Species will remain in thermal equilibrium as long as their interaction rate exceeds the expansion rate

$$
n\langle\sigma E\rangle\gg H=\frac{\dot{R}}{R}
$$

Thermal history of the Universe

The cosmic microwave background Radiation's "surface of last scatter" is analogous to the light coming through the clouds to our eye on a cloudy day.

We can only see the surface of the cloud where light was last scattered 4He equilibrium abundance

$$
V_{\alpha} = \frac{2 (N_n / N_p)}{N_n + N_p}
$$

 Y_α depends on $T_{\text{freeze-out}}$ which in turn depends on g_s

Neutrino counting !

$$
\delta V_\alpha \propto \delta g_s \propto \delta N_v
$$

Neutrino decoupling

 $dS = dE/T \Rightarrow$ entropy per unit volume $\sim g_s T^3$

Before e+e- annihilation: $g_s^{(b)} = 2 + (7/8) \times 4 = 11/2$

After ete-annihilation: $q_s^{(a)} = 2$

Entropy conservation: $g_{before}T^3_{before} = g_{after}T^3_{after}$

$$
T_{after} = (11/4)^{1/3} T_{before}
$$

T_y = 2.7 °K T_y = 1.9 °K

Flux on earth of neutrinos from various sources, in function of energy

Probing the Cosmic Microwave Background Radiation (CMBR)

WMAP results:

Dark Blue = $-200 \mu K$ Red = $+200 \mu K$

In the matter-dominated epoch massive neutrinos cluster on very large scales, but free-stream out of smaller scale fluctuations. This suppresses the amplitude of the fluctuations.

$$
\Omega_{v} \sim \left\{\frac{m_{v}}{92 \text{ eV}}\right\} \left\{\frac{T\gamma}{2.75 \text{ K}}\right\}^{3}
$$

Combination of several experiments:

 $\Omega_{_{\rm V}}$ h² < 0.0072 (95% C.L.)

Cosmological Implications

Atmospheric neutrinos: $\Delta m_{23}{}^2\approx 2.0\times 10^{-3}$ eV² \therefore One neutrino mass > 0.04 eV

SNO + KamLAND: Δ M $_{12}$ ² $\approx 7.1 \times 10^{-5}$ eV² \therefore One neutrino mass > 0.008 eV

Limits on " $\rm v_e$ mass" give: $\rm ~m(v_{1,2,3})$ < 2.2 eV

 Σ neutrino masses: 0.048 < m $_1$ +m $_2$ +m $_3$ < 6.6 $\,$ eV $0.001 < \Omega_{_{\rm V}}$ < 0.13

Stay tuned…

Summary of Methods to Obtain Neutrino Masses

Only double beta decay is sensitive to Majorana nature.

Where do we stand?

A perspective

Fundamental discoveries are recently made

- SNO, 2002: Discovery of the non-electron neutrino component of the solar flux (\Rightarrow neutrino oscillations); measurement of the total solar neutrino flux.
- SuperK, 1998:Discovery of atmospheric neutrino flux variations (\Rightarrow neutrino oscillations).
- • Baksan, Kamioka, IMB, 1987: Detection of neutrinos from Supernova 1987A (neutrino flux consistent with neutron star binding energy, cooling time is near that expected).
- Irvine, 1987: Detection of two-neutrino double-beta decay.
- MSW, 1986: Recognition that matter enhances neutrino oscillations.

..that broadly impact physics, astronomy, and cosmology

- \bullet Massive neutrinos: Beyond the Standard Model of elementary particles.
- • Neutrino mixing angles are close to maximal: Impacts on leptogenesis; explosion mechanism and nucleosynthesis in core-collapse supernovae.
- Total solar neutrino flux is measured: The theory of main sequence stellar evolution is verified.
- \bullet Direct neutrino mass measurements: Neutrino component of dark matter. WMAP put significant limits on $\Omega_{\rm v}$

Backup slides

Applications of v -nucleus interactions

Theory and applications of Detector Response: Detectors for solar, atmospheric, accelerator, and reactor neutrinos.

Input into astrophysics: Neutrino reactions in corecollapse supernovae, supernova nucleosynthesis, gamma-ray burst nucleosynthesis.

Tests of nuclear structure calculations: Shell Model, effective field theories.

Fundamental physics at low energies: Determining proton strange form factors.

Neutrino-nucleus cross-sections

We need to know the response of the nucleus to neutrinos with a wide range of energies.

What happens when a 50 MeV neutrino hits a nucleus? Where is the strength? What is $g_{\scriptscriptstyle\mathcal{A}}/g_{\scriptscriptstyle\mathsf{V}}$?

As the incoming neutrino energy increases, the contribution of the states which are not well-known increase, including first- and even second-forbidden transitions.

At the lowest energies Shell Model is the best approach. Gamow-Teller strength is quenched in the Shell Model:

Beta-decay rates from Nowacki

At higher energies where the rate is sensitive to total strength and the energy of giant resonances there is a tendency to use RPA.

However…

Using Shell Model to calculate neutrino-nucleus cross-sections one needs to use effective operators when one employs effective Hamiltonians. However in most calculations the systematics of BE(2) transitions are characterized by effective charges and Gamow-Teller distributions by quenching. Different calculations disagree by as much as 30% from from one another. To understand neutrino-nucleus collisions at energies up to 60 MeV we need 1) A more consistent treatment of the Shell Model in a bigger basis spaces; and 2) More data. We should also be careful with the QRPA calculations.

We should also question the effective interactions utilized. For example, Otsuka, et al. find that inclusion of a tensor force in the Shell Model may increase the Gamow-Teller strength distribution at higher energies.

This is bread and butter nuclear structure physics!

Effective Field theory Approach to low-energy neutrinodeuteron scattering Butler, Chen

Below the pion threshold ${}^3S_1 \rightarrow {}^3S_0$ transition dominates and one only needs the coefficient of the two-body counter term, L_{1A} (isovector two-body axial current)

Note that an observation of Ονββ double beta decay does not necessarily imply the existence of a light Majorana neutrino!

 $A_{L} \sim m_{\beta\beta}$
 $A_{H} \sim M_{W}^{4}$ / Λ^{5} **for ~ 1 TeV both mechanisms may contribute equally.**

Lepton Flavor violation involving charged leptons may provide a "diagnostic tool" for establishing the mechanism of 0νββ **decay**

Ramsey-Musolf & Vogel

Exchange of a light neutrino, only left-handed currents

Exchange of a heavy neutrino, short range hadron physics at play

Exchange of a light or heavy neutrino and one right-handed W_R

Exchange of supersymmetric particles, R-symmetry violated

There is a big spread in the matrix elements calculated using QRPA

 $0\nu\beta\beta$ matrix elements

In QRPA the dependence of the Ov β **matrix element on s.p. states is** reduced if the coupling strength $g_{_{\text{DD}}}$ 2 - **rate:**

Most of this spread can be traced to different choices of the initial and final states, choice of the value of the parameter g_{pp} , and corrections for the short-range nuclear repulsion.