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Structure Synopsis

• Heavier Nuclei, so:
• Simpler Structure Theories:

–Liquid-Drop model
–Magic Numbers at Shells; Deformation;

Pairing
–Shell Model
–Hartree-Fock

(Mean-field; Energy Density Functional)
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Segré Chart of Isotopes
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Segré Chart of Isotopes
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Nuclei with A≥16

• Start with Liquid-Drop model
–Parametrise binding energies
–Look for improvements

• Magic Numbers for Shells
• Shell Corrections
• Deformation
• Pairing

• Shell Model
• Mean field: Hartree-Fock
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• Let’s start with the semi-empirical mass
formula, Bethe-Weizsäcker formual, or also
the liquid-drop model.

– There are global Volume, Surface,  Symmetry,
and Coulomb terms

– And specific corrections for each nucleus due
to pairing and shell structure

Nuclear masses: what nuclei exist?
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Nuclear masses, what nuclei exist?
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Liquid-drop isn’t too bad!
There are notable problems
though.

Can we do better and what
about the microscopic
structure?

Bethe-Weizsäcker Bethe-Weizsäcker formulaformula
From A. Bohr and B.R. Mottleson,

Nuclear Structure, vol. 1, p. 168
Benjamin, 1969, New York
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• How about deformation?
• For each energy term, there are also shape factors dependent on the

quadrupole deformation parameters β and γ

Nuclear masses, what nuclei exist?
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Note that the liquid drop always has a minimum for a spherical shape!
So, where does deformation come from?
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Shell structure - evidence in atoms
• Atomic ionization potentials show sharp discontinuities at shell

boundaries

From A. Bohr and B.R. Mottleson,
Nuclear Structure, vol. 1, p. 191

Benjamin, 1969, New York
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Shell structure - neutron separation energies

• So do neutron separation energies

From A. Bohr and B.R. Mottleson,
Nuclear Structure, vol. 1, p. 193

Benjamin, 1969, New York
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• Binding energies show preferred magic numbers
– 2, 8, 20, 28, 50, 82, and 126

More evidence of shell structure
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From W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

Deviation from average binding energy
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• Goeppert-Mayer and Haxel,
Jensen, and Suess proposed the
independent-particle shell model
to explain the magic numbers

Origin of the shell model
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M.G. Mayer and J.H.D. Jensen, Elementary Theory of Nuclear 
Shell Structure,p. 58, Wiley, New York, 1955

Harmonic
oscillator with
spin-orbit is a
reasonable
approximation
to the nuclear
mean field
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• Anisotropic harmonic oscillator

Nilsson Hamiltonian - Poor man’s Hartree-Fock
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• Shell correction
– In general, the liquid drop does a good job on the bulk properties

• The oscillator doesn’t!
– But we need to put in corrections due to shell structure

• Strutinsky averaging; difference between the energy of the discrete spectrum and the
averaged, smoothed spectrum

Nuclear masses
Shell corrections to the liquid drop
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• Energy surfaces as a function of deformation
Nilsson-Strutinsky and deformation

Nilsson-Strutinsky is a mean-field type approach that allows for
a comprehensive study of nuclear deformation under rotation
and at high temperature

From C.G. Andersson,et al., Nucl. Phys. A268, 205 (1976)



NNPSS: July 9-11, 2007 16

• Pairing:

Nuclear masses
Pairing corrections to the liquid drop
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= 0;                     odd - even(even - odd)

From A. Bohr and B.R. Mottleson,
Nuclear Structure, vol. 1, p. 170

Benjamin, 1969, New York

! 

" n = 1

4
{BE N # 2,Z( ) # 3BE N #1,Z( )

           + 3BE N,Z( ) # BE N +1,Z( )}

" p = 1

4
{BE N,Z # 2( ) # 3BE N,Z #1( )

           + 3BE N,Z( ) # BE N,Z +1( )}



NNPSS: July 9-11, 2007 17

The Shell Model

• More microscopic theory
– Include all nucleons
–Fully antisymmetrised wave functions
– Include all correlations in a ‘shell’.
–Harmonic Oscillator basis states.

• Effective Hamiltonian
–Still needed!
–Find or fit potential matrix elements,
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Many-body Hamiltonian
• Start with the many-body Hamiltonian

• Introduce a mean-field U  to yield basis

• The mean field determines the shell structure
• In effect, nuclear-structure calculations rely on perturbation theory
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The success of any nuclear structure calculation depends on
the choice of the mean-field basis and the residual interaction!
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Single-particle wave functions
• With the mean-field, we have the basis for building many-body states
• This starts with the single-particle, radial wave functions, defined by the

radial quantum number n, orbital angular momentum l, and z-projection m

– Now include the spin wave function:

• Two choices, jj-coupling or ls-coupling
– Ls-coupling

– jj-coupling is very convenient when we have a spin-orbit (l⋅s) force
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Multiple-particle wave functions
• Total angular momentum, and isospin;
• Anti-symmetrized, two particle, jj-coupled wave function

– Note J+T=odd if the particles occupy the same orbits
• Anti-symmetrized, two particle, LS-coupled wave function
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Two-particle wave functions
• Of course, the two pictures describe the same physics, so there is a way to

connect them
– Recoupling coefficients

• Note that the wave functions have been defined in terms of     and     , but
often we need them in terms of the relative coordinate
– We can do this in two ways

• Transform the operator
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and very important
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Two-particle wave functions in relative coordinate

• Use Harmonic-oscillator wave functions and decompose in terms of the
relative and center-of-mass coordinates, i.e.,

• Harmonic oscillator wave functions are a very good approximation to the
single-particle wave functions

• We have the useful transformation

– 2n1+l2+2n2+l2=2n+l+2N+L
– Where the M(nlNL;n1l1n2l2) is known as the Moshinksy bracket
– Note this is where we use the jj to LS coupling transformation
– For some detailed applications look in Theory of the Nuclear Shell Model, R.D.

Lawson, (Clarendon Press, Oxford, 1980)
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Many-particle wave function
• To add more particles, we just continue along the same lines
• To build states with good angular momentum, we can bootstrap up from the

two-particle case, being careful to denote the distinct states
– This method uses Coefficients of Fractional Parentage (CFP)

• Or we can make a many-body Slater determinant that has only a specified Jz
and Tz and project J and T
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Second Quantization
• Second quantization is one of the most useful representations in many-body

theory
• Creation and annihilation operators

– Denote |0〉 as the state with no particles (the vacuum)
– ai

+  creates a particle in state i;
– ai annihilates a particle in state i;
– Anti-commutation relations:

• Many-body Slater determinant
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Second Quantization
• Operators in second-quantization formalism

– Take any one-body operator O, say quadrupole E2 transition operator er2Y2µ,
the operator is represented as:

where 〈j|O|i〉 is the single-particle matrix element of the operator O
– The same formalism exists for any n-body operator, e.g., for the NN-

interaction

• Here, I’ve written the two-body matrix element with an implicit assumption that it is
anti-symmetrized, i.e.,
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Second Quantization
• Matrix elements for Slater determinants      (all aceklm different)
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values for the many-body system simpler
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Second Quantization
• Angular momentum tensors

– Creation operators rotate as tensors of rank j
– Not so for annihilation operators

• Anti-symmetrized, two-body state
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Shell-model mean field
• One place to start for the mean field is the harmonic oscillator

– Specifically, we add the center-of-mass potential

– The Good:
• Provides a convenient basis to build the many-body Slater determinants
• Does not affect the intrinsic motion
• Exact separation between intrinsic and center-of-mass motion

– The Bad:
• Radial behavior is not right for large r
• Provides a confining potential, so all states are effectively bound
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Low-lying structure –
The interacting Shell Model

• The interacting shell model is one of the most powerful tools available
too us to describe the low-lying structure of light nuclei

• We start at the usual place:

• Construct many-body states |φi〉 so that

• Calculate Hamiltonian matrix Hij=〈φj|H|φi〉
– Diagonalize to obtain eigenvalues
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Shell model applications
• The practical Shell Model

1. Choose a model space to be used for a range of nuclei
• E.g., the 0d and 1s orbits (sd-shell) for 16O to 40Ca or the 0f and 1p orbits for 40Ca

to 120Nd
2. We start from the premise that the effective interaction exists
3. We use effective interaction theory to make a first approximation (G-matrix)
4. Then tune specific matrix elements to reproduce known experimental levels
5. With this empirical interaction, then extrapolate to all nuclei within the

chosen model space
6. Note that radial wave functions are explicitly not included, so we add them

in later

The empirical shell model works well!
But be careful to know the limitations!
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Simple application of the shell model
• A=18, two-particle problem with 16O core

– Two protons: 18Ne (T=1)
– One Proton and one neutron: 18F (T=0 and T=1)
– Two neutrons: 18O (T=1)

Example: 18O

• How many states for each Jz? How many states of each J?
– There are 14 states with Jz=0

• N(J=0)=3
• N(J=1)=2
• N(J=2)=5
• N(J=3)=2
• N(J=4)=2

Question # 1?
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Simple application of the shell model, cont.
Example:

Question #2

• What are the energies of the three 0+ states in 18O?
– Use the Universal SD-shell interaction (Wildenthal)
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Simple application of the shell model, cont.
Example:

• Set up the Hamiltonian matrix
– We can use all 14 Jz=0 states, and

we’ll recover all 14 J-states
– But for this example, we’ll use the

two-particle J=0 states

Finding the eigenvalues
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What about heavier nuclei?
• Above A ~ 60 or so the number of configurations just gets to be

too large ~ 1010!
• Here, we need to think of more approximate methods
• The easiest place to start is the mean-field of Hartree-Fock

– But, once again we have the problem of the interaction
• Repulsive core causes us no end of grief!!
• So still need effective interactions!
• At some point use fitted effective interactions like the Skyrme force
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Hartree-Fock
• There are many choices for the mean field, and Hartree-Fock is one

optimal choice
• We want to find the best single Slater determinant Φ0 so that

• Thouless’ theorem
– Any other Slater determinant Φ not orthogonal to Φ0 may be

written as

– Where i is a state occupied in Φ0 and m is unoccupied
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Hartree-Fock

• Let i,j,k,l denote occupied states and m,n,o,p unoccupied states
• After substituting back we get

• This leads directly to the Hartree-Fock single-particle Hamiltonian h with
matrix elements between any two states α and β
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Hartree-Fock
• We now have a mechanism for defining a mean-field

– It does depend on the occupied states
– Also the matrix elements with unoccupied states are zero, so the first order

1p-1h corrections do not contribute

• We obtain an eigenvalue equation (more on this later)

• Energies of A+1 and A-1 nuclei relative to A
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Hartree-Fock – Eigenvalue equation
• Two ways to approach the eigenvalue problem

– Coordinate space where we solve a Schrödinger-like equation
– Expand in terms of a basis, e.g., harmonic-oscillator wave function

• Expansion
– Denote basis states by Greek letters, e.g., α

– From the variational principle, we obtain the eigenvalue equation
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Hartree-Fock –
Solving the eigenvalue equation

• As I have written the eigenvalue equation, it doesn’t look to useful
because we need to know what states are occupied

• We use three steps
1. Make an initial guess of the occupied states & the expansion coefficients Ciα

• For example the lowest Harmonic-oscillator states, or a Woods-Saxon and Ciα=δiα

2. With this ansatz, set up the eigenvalue equations and solve them
3. Use the eigenstates |i〉 from step 2 to make the Slater determinant Φ0, go

back to step 2 until the coefficients Ciα are unchanged

The Hartree-Fock equations are solved self-consistently
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Hartree-Fock – Coordinate space
• Here, we denote the single-particle wave functions as φi(r)

• These equations are solved the same way as the matrix eigenvalue
problem before
1. Make a guess for the wave functions φi(r) and Slater determinant Φ0
2. Solve the Hartree-Fock differential equation to obtain new states φi(r)
3. With these go back to step 2 and repeat until φi(r) are unchanged
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Hartree-Fock

• M. Moshinsky, Am. J. Phys. 36, 52 (1968). Erratum, Am. J. Phys. 36, 763
(1968).

• Two identical spin-1/2 particles in a spin singlet interact via the Hamiltonian

• Use the coordinates                      and                        to show the exact
energy and wave function are

• Note that since the spin wave function (S=0) is anti-symmetric, the spatial
wave function is symmetric

Hard homework problem:
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Hartree-Fock

• The Hartree-Fock solution for the spatial part is the same as the Hartree
solution for the S-state. Show the Hartree energy and radial wave function
are:

Hard homework problem:
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Hartree-Fock with the Skyrme interaction

• In general, there are serious problems trying to apply Hartree-Fock with
realistic NN-interactions (for one the saturation of nuclear matter is
incorrect)

• Use an effective interaction, in particular a force proposed by Skyrme

– Pσ is the spin-exchange operator
• The three-nucleon interaction is actually a density dependent two-body,

so replace with a more general form, where α determines the
incompressibility of nuclear matter
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Hartree-Fock with the Skyrme interaction

• One of the first references: D. Vautherin and D.M. Brink, PRC 5, 626
(1972)

• Solve a Schrödinger-like equation

– Note the effective mass m*

– Typically, m* < m, although it doesn’t have to, and is determined by the
parameters t1 and t2
• The effective mass influences the spacing of the single-particle states
• The bias in the past was for m*/m ~ 0.7 because of earlier calculations with realistic

interactions
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Hartree-Fock calculations
• The nice thing about the Skyrme interaction is that it leads to a

computationally tractable problem
– Spherical (one-dimension)
– Deformed

• Axial symmetry (two-dimensions)
• No symmetries (full three-dimensional)

• There are also many different choices for the Skyrme parameters
– They all do some things right, and some things wrong, and to a large degree

it depends on what you want to do with them
– Some of the leading (or modern) choices are:

• M*, M. Bartel et al., NPA386, 79 (1982)
• SkP [includes pairing], J. Dobaczewski and H. Flocard, NPA422, 103 (1984)
• SkX, B.A. Brown, W.A. Richter, and R. Lindsay, PLB483, 49 (2000)
• Apologies to those not mentioned!

– There is also a finite-range potential based on Gaussians due to D. Gogny,
D1S, J. Dechargé and D. Gogny, PRC21, 1568 (1980).

• Take a look at J. Dobaczewski et al., PRC53, 2809 (1996) for a nice
study near the neutron drip-line and the effects of unbound states
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Nuclear structure
• Remember what our goal is:

– To obtain a quantitative description of all nuclei within a microscopic frame
work

– Namely, to solve the many-body Hamiltonian:
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Nuclear structure
• Hartree-Fock is the optimal choice for the mean-field potential U(r)!

– The Skyrme interaction is an “effective” interaction that permits a wide range
of studies, e.g., masses, halo-nuclei, etc.

– Traditionally the Skyrme parameters are fitted to binding energies of doubly
magic nuclei, rms charge-radii, the incompressibility, and a few spin-orbit
splittings

• One goal would be to calculate masses for all nuclei
–  By fixing the Skyrme force to known nuclei, maybe we can get 500 keV

accuracy that CAN be extrapolated into the unknown region
• This will require some input about neutron densities – parity-violating electron

scattering can determine <r2>p-<r2>n.
– This could have an important impact
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Hartree-Fock calculations
• Permits a study of a wide-range of nuclei, in particular, those far from

stability and with exotic properties, halo nuclei
H. Sagawa, PRC65, 064314 (2002)H. Sagawa, PRC65, 064314 (2002) The tail of the radial densityThe tail of the radial density

depends on the separationdepends on the separation
energyenergy
S. S. Mizutori Mizutori et al. PRC61, 044326 (2000)et al. PRC61, 044326 (2000)

Drip-line studiesDrip-line studies
J. Dobaczewski et al., PRC53, 2809
(1996)
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What can Hartree-Fock calculations tell
us about shell structure?

• Shell structure
– Because of the self-consistency, the shell structure can change from nucleus

to nucleus

J. Dobaczewski et al., PRC53, 2809 (1996)

As we add neutrons, traditional
shell closures are changed, and
may even disappear!
This is THE challenge in trying to
predict the structure of nuclei at
the drip lines!
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Beyond mean field
• Hartee-Fock is a good starting approximation

– There are no particle-hole corrections to the HF ground state

– The first correction is

• However, this doesn’t make a lot of sense for Skyrme potentials
– They are fit to closed-shell nuclei, so they effectively have all these higher-

order corrections in them!
• We can try to estimate the excitation spectrum of one-particle-one-hole

states – Giant resonances
– Tamm-Dancoff approximation (TDA)
– Random-Phase approximation (RPA)
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You should look these up!You should look these up!
A Shell Model Description of Light Nuclei, I.S. TownerA Shell Model Description of Light Nuclei, I.S. Towner
The Nuclear Many-Body Problem, Ring & The Nuclear Many-Body Problem, Ring & SchuckSchuck
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Nuclear structure in the future

Ab initio methods

Standard shell model
Mean-field, Hartre

e-Fock

Monte
Carlo Shell

Model

With newer methods and
powerful computers, the future
of nuclear structure theory is
bright!


