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Structure Synopsis

e Heavier Nuclei, so:

e Simpler Structure Theories:
- Liquid-Drop model
— Magic Numbers at Shells; Deformation;
Pairing
— Shell Model

— Hartree-Fock
(Mean-field; Energy Density Functional)
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Segre Chart of Isotopes
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Limits of nuclear --
existence
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Segre Chart of Isotopes

126

Limits of nuclear
existence

protons

0% Shell Many-body approaches

Ab initio Model for ordinary nuclei

few-body
calculations No-Core Shell Model
G-matrix
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Nuclei with A=16

e Start with Liquid-Drop model
— Parametrise binding energies

- Look for improvements
e Magic Numbers for Shells
e Shell Corrections
e Deformation
e Pairing

e Shell Model
e Mean field: Hartree-Fock
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Nuclear masses: what nuclei exist?
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Towards a unified
description of the nucleus
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One goal in theory is to
accurately describe the
binding energy

M(Z,N,A)=Zm, + Nm_-BE(Z,N, A)

« Let’s start with the semi-empirical mass
formula, Bethe-Weizséacker formual, or also

the liquid-drop model.

2
Z-N
BE(Z,N,A) = a,A-ag, A" -a,, % +
aCoulZ(Z - I)A_l/3 + APair + 5Shell

— There are global Volume, Surface, Symmetry,

and Coulomb terms

— And specific corrections for each nucleus due
to pairing and shell structure

a, =15.85MeV
ag,; =18.34 MeV

dgm = 23.21MeV
a,, =0.71MeV

Values for the parameters,
A.H. Wapstra and N.B. Gove, Nulc. Data
Tables 9, 267 (1971)
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Nuclear masses, what nuclei exist?

2/3 (Z B N)2 -1/3
BE(Z,N,A) =a,A-ag, A" —ag, — +a.,,L(Z-1)A
gofF N=20 2? 50 82 126 ]
Liquid-drop isn’t too bad!
There are notable problems
os | though.
= Can we do better and what
z about the microscopic
= structure?

o
o
N_
=}
w
o

From A. Bohr and B.R. Mottleson, }
Nuclear Structure, vol. 1, p. 168 L A Bethe-Weizsicker formula

Benjamin, 1969, New York '
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Nuclear masses, what nuclei exist?

How about deformation?

For each energy term, there are also shape factors dependent on the
quadrupole deformation parameters s and y JA

2 3
2 5 2 5
B, . =1+—|.— — | A — CoS3y +...
Y 5 4nﬁ 21(V4nﬁ) 4

2 3
1 3 1 (5
B ~]——|.— — CcoS3y +...
con =1=5\ 27" HB(V4nﬁ) i

R(0.9) = R[1+ Yy (0.0) + ay(Y5,(60.00) + ¥,.,(0.0)) |
@y, = pcosy

Ay = (ﬁ/ﬁ) siny

Note that the liquid drop always has a minimum for a spherical shape!
So, where does deformation come from?
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Shell structure - evidence in atoms

- Atomic ionization potentials show sharp discontinuities at shell

boundaries
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Shell structure - neutron separation energies

+ So do neutron separation energies

15 |-
o N odd
e S, (N,Z) =B(N,Z)-B(N-1,2)
Z even
4': ‘II‘“
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_ T T I T From A. Bohr and B.R. Mottleson,
B 2 8 20 28 50 82 126 Nuclear Structure, vol. 1, p. 193
Benjamin, 1969, New York
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More evidence of shell structure

- Binding energies show preferred magic numbers
- 2,8, 20, 28, 50, 82, and 126

| 0 ..................... .

Deviation from average binding energy

|
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Experimental Single-particle Effect (MeV)
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From W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)
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Origin of the shell model

«  Goeppert-Mayer and Haxel,
Jensen, and Suess proposed the

independent-particle shell model

to explain the magic numbers

Harmonic
oscillator with
spin-orbit is a
reasonable
approximation
to the nuclear
mean field

o X>
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Nilsson Hamiltonian - Poor man’s Hartree-Fock

. Anisotropic harmonic oscillator
p- , m
o= 2
—+—(a) X+ y +w’z ) 2hwxl-s —hokul
. 2m 2
hw, = 41A" MeV
5
W/Eﬁ cos(y +2/3)
‘.0 W, =w,e
5
E 1,—[3 cos(y-2m/3)
hwo(Bo) a) — a)oe 4
351 - e ,‘{ B cosy
;;- — ."b ¥ = wOe
. |
| %
I
10 |
!
I
|
T~ | ;
— @
e ¥,
25 o Gl
o4 03 0z _01 L o 02 \HJ\ o Po | FromIM. Eisenberg and W. Greiner, Nuclear Models,
-6 ‘ -2 9 2 P RS p 542, North Holland, Amsterdam, 1987
Oblate, y=60° Prolate, y=0°
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Nuclear masses
Shell corrections to the liquid drop

« Shell correction
— In general, the liquid drop does a good job on the bulk properties
« The oscillator doesn’t!

— But we need to put in corrections due to shell structure

 Strutinsky averaging; difference between the energy of the discrete spectrum and the
averaged, smoothed spectrum

Discrete spectrum Mean-field single-particle spectrum Smoothed spectrum

£ Sle-) | == 2e)- B[ plee)

154
M 3 —
€p = - F f(x):L(x)e'("‘E') /v /2’\/;)/
o | ~
N = fg(g)dg i N = fg (8 }18 is a modified Gaussian
—oo =2 y = hQ
Ep 3 | ‘ £
Epiroe = f eg(e)de R | | || |'| || |'| | | | Eirutinsy = f e2 (e Me
—0 0 20 40 60 80 -
E (MeV)
5Shell =L Discrete E Strutinsky
O NNPSS: July 9-11, 2007 14
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Nilsson-Strutinsky and deformation

- Energy surfaces as a function of deformation

.
B

lGOYb 5

1-0 &L : ¥

o (& \

T
04

From C.G. Andersson,et al., Nucl. Phys. A268, 205 (1976)

Nilsson-Strutinsky is a mean-field type approach that allows for
a comprehensive study of nuclear deformation under rotation
and at high temperature
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Nuclear masses

Pairing corrections to the liquid drop

» Pairing: A (Z,N,A) ==(+)12A7"%;  even-even(odd - odd)

=0; odd - even(even - odd)

A, =1{BE(N-2,Z)-3BE(N-1Z) °-
+3BE(N,Z)- BE(N +1,Z)}
= L{BE(N,Z -2)-3BE(N,Z -1) e

]

p
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{ From A. Bohr and B.R. Mottleson,

Nuclear Structure, vol. 1, p. 170
Benjamin, 1969, New York
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The Shell Model

e More microscopic theory
- Include all nucleons
- Fully antisymmetrised wave functions
—Include all correlations in a ‘shell’.
— Harmonic Oscillator basis states.

o Effective Hamiltonian
- Still needed!
- Find or fit potential matrix elements,

sy NNPSS: July 9-11, 2007 17

)
- e

& Modeling Group 7/t

g‘;d. Nuclear Theory
[ X3

Y



Many-body Hamiltonian

« Start with the many-body Hamiltonian

E”l + 2 V(7= 7))

l<]

0flp N=4

« Introduce a mean-field U to yield basis

. E(R Fulr ) SValF-7)-JU(1) vt @050

i<j i L OO

Residual interaction

- The mean field determines the shell structure
- In effect, nuclear-structure calculations rely on perturbation theory

The success of any nuclear structure calculation depends on
the choice of the mean-field basis and the residual interaction!

I‘vd Nuclear Theory NNPSS: JUly 9-1 1, 2007
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Single-particle wave functions

With the mean-field, we have the basis for building many-body states

This starts with the single-particle, radial wave functions, defined by the
radial quantum number #n, orbital angular momentum /, and z-projection m

(pnlm (f) = Rnl(r)Ylm (f)
— Now include the spin wave function: stz

Two choices, jj-coupling or Is-coupling
— Ls-coupling

— - S 2\A, 8
(pnlmsz (r) = (pnlmsz (r)Xlst = Rnl(r)Ylm(r)X%sz
— jji-coupling is very convenient when we have a spin-orbit (/) force

- R IE
QDnljjz (I') B Rnl(r)l:Yl (1') ® X;]

@] = Slmss i i),

ms,

() Nuclear Theory _ - NNPSS: July 9-11, 2007 19
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Multiple-particle wave functions

Total angular momentum, and isospin; stz
Anti-symmetrized, two particle, jj-coupled wave function

- . M SN - L \M
JJ]L[JTZTZ B {[mnlll Ji (Ii) ® (pnzlzjz (I:Z)] T (_1)] e T[(p"212j2 (Ii) ® mnlll Y (rZ)] }
TT,
Ko@) 2+e,)

— Note J+T=0dd if the particles occupy the same orbits
Anti-symmetrized, two particle, LS-coupled wave function

2

Vi ={([%lll D90 @] -0 o @S0 @ Je[0 e re] |

®X1 / 1+612

() Nuclear Theory _ NNPSS: July 9-11, 2007 20
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Two-particle wave functions

- Of course, the two pictures describe the same physics, so there is a way to
connect them

— Recoupling coefficients  (j =+/2j+1)

L
hija A°A°lz§<l 1 . FwLS
JMIT., JiJh > 2 Ja2f Wimrr,
- L S J

« Note that the wave functions have been defined in terms of fl and fz but

—

often we need them in terms of the relative coordinate r = ‘fl — rz‘

— We can do this in two ways

« Transform the operator
A w— | { ‘I\ F (I" I’L\ r =200

v Quadrupole, I=2, component is large

and very important
Zl+1

—fPl(cosH)V(\f1 ~1|)sin6,,d6,,
0

Fz(”v”z):

[(X*) Nuclear Theory NNPSS: July 9-11, 2007 21
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Two-particle wave functions in relative coordinate

« Use Harmonic-oscillator wave functions and decompose in terms of the
relative and center-of-mass coordinates, i.e.,

L|; R=‘r1+r2‘/2

« Harmonic oscillator wave functions are a very good approximation to the
single-particle wave functions

 We have the useful transformation

=i -

[¢nlll ( ) ¥ ¢n]ll ( ]L/M, - E M(nlNL;nlllnzlz )I:gbnl(f) X Py, (ﬁ):lLM

nINL

— 2n+tL+2n,+,=2n+[+2N+L
— Where the M(nINL;n,ln,l,) is known as the Moshinksy bracket
— Note this is where we use the jj to LS coupling transformation

— For some detailed applications look in Theory of the Nuclear Shell Model, R.D.
Lawson, (Clarendon Press, Oxford, 1980)

0] Nuclear Theory

NNPSS: July 9-11, 2007
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Many-particle wave function

To add more particles, we just continue along the same lines
To build states with good angular momentum, we can bootstrap up from the
two-particle case, being careful to denote the distinct states

— This method uses Coefficients of Fractional Parentage (CFP)

M) = E[ j e jNod] /") ®] j>]JM

ryr

a'J

Or we can make a many-body Slater determinant that has only a specified J,
and 7, and project Jand T

¢niliji s (rl) ¢nili I s <1'2) o ¢nili iy (rA)
1 (pnjljjjjzj (rl) ¢njljjjjzj (1‘2) ¢njljjjjzj (rA)

¢”111 Ik (rl) ¢”111 JiJzy <r2) T ¢”lll Jiiy (rA )

In general Slater determinants are more convenient

NNPSS: July 9-11, 2007 23




Second Quantization

Second quantization is one of the most useful representations in many-body
theory

Creation and annihilation operators
— Denote 10) as the state with no partlcles (the vacuum)

— a," creates a particle in state i; 10y=i), af|iy=0
— g, annihilates a particle in state i; ) 0);  al0)=0
— Anti-commutation relations:

{a;,a;} = {ai,aj} =0
{ai,a;} = {a;,ai} =0,

Many-body Slater determinant

¢i(rl) ¢i(r2) ¢i(rA)

__1p(n) ¢,(ry) o,(ra) . L
(I)_\/X : 3 : _w@

¢z(l'1) ¢l(l'2) ¢)l(rA) [>..>]>i

NNPSS: July 9-11, 2007 24




Second Quantization

Operators in second-quantization formalism

— Take any one-body operator O, say quadrupole E2 transition operator er2Y2M,
the operator is represented as:

0= jlolaa
ij

where (j|O|i) is the single-particle matrix element of the operator O

— The same formalism exists for any n-body operator, e.g., for the NN-
interaction

1 ) + _+ . . + _+
V= ZE<ZJ‘V‘/€Z>A a;a;a,q, = E<ZJ‘V‘/€Z>A a;a;a,q,

ijkl i< jk<l
(i|VIkL), = (i|V|kL) = (ij|V| k)

+ Here, I've written the two-body matrix element with an implicit assumption that it is
anti-symmetrized, i.e.,

I‘vd Nuclear Theory _ NNPSS: JUly 9-1 1, 2007 25
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Second Quantization

Matrix elements for Slater determinants  (all acekim different)

<acekl O>

+ + + _+ 4+

aa ‘aeklm>—<0‘aaaaaa+a aaaaa
c%m - Yk e e aYe Y m“m™ Yk e Ya

+ _+ + + 4+

= <O‘alakaeacaaac al ak aefla

+ 4+ + o+ 4

= —<O‘alakaeacaaa, a,a,a.da

e C a
-1

O> = <acekl

aekl >

+
aC

O> = —<acekl ‘acekl>

Second quantization makes the computation of expectation
values for the many-body system simpler

.‘vd Nuclear Theory NNPSS: JUly 9-1 1, 2007 26
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Second Quantization

Angular momentum tensors
— Creation operators rotate as tensors of rank j
— Not so for annihilation operators

a, = (—l)j”Z a.,

jm

Anti-symmetrized, two-body state

o 1 . . M
Judy IM.TT.) =~ at, ®ajb;]” 0)
ab ¢

I“" Nuclear Theory NNPSS: July 9-11, 2007
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Shell-model mean field

« One place to start for the mean field is the harmonic oscillator
— Specifically, we add the center-of-mass potential

Hey = am@ i = 3 L - 3 (75 )

I<]J

« Provides a convenient basis to build the many-body Slater determinants
+ Does not affect the intrinsic motion
« Exact separation between intrinsic and center-of-mass motion

— The Bad:

- Radial behavior is not right for large r
+ Provides a confining potential, so all states are effectively bound

I‘vd Nuclear Theory NNPSS: JUIy 9-1 1, 2007
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Low-lying structure —
The interacting Shell Model

- The interacting shell model is one of the most powerful tools available
too us to describe the low-lying structure of light nuclei

«  We start at the usual place:

S{E oo i3

i<j i o @)
00
«  Construct many-body states l¢) so that pN=1 | 055/
00
\Ili = Ecln¢n
- Calculate Hamiltonian matrix H,=(¢|H4; o(r) o) ..
— Diagonalize to obtain eigenvalues ¢=ﬁ¢f(rl) ‘pf(:rZ)
H, H, - Hy N $(r)  ¢(ry)
H-21 H, — =a/...a%a;|0)
H,, .. H,, —

We want an accurate description of low-lying states

I‘vd Nuclear Theory NNPSS: JUly 9-1 1, 2007
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Shell model applications

- The practical Shell Model

1. Choose a model space to be used for a range of nuclei

E.g., the 0d and 1s orbits (sd-shell) for 0 to 4°Ca or the 0f and 1p orbits for 4°Ca
to 20Nd

We start from the premise that the effective interaction exists
We use effective interaction theory to make a first approximation (G-matrix)
Then tune specific matrix elements to reproduce known experimental levels

With this empirical interaction, then extrapolate to all nuclei within the
chosen model space

S A

6. Note that radial wave functions are explicitly not included, so we add them
in later

The empirical shell model works well!
But be careful to know the limitations!

e l.»/_/_r

-

& Modeling Group , 71,
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Simple application of the shell model

A=18, two-particle problem with %O core
— Two protons: 8Ne (T=1)
— One Proton and one neutron: 18F (T=0 and T=1)
— Two neutrons: 80 (T=1)

Example: 130

Question # 1?

How many states for each J_? How many states of each J?
— There are 14 states with J,=0

Ve NNPSS: July 9-11, 2007
5:0:. Nuclear Theory y
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Simple application of the shell model, cont.

Example:

Question #2

- What are the energies of the three 0+ states in 180?
— Use the Universal SD-shell interaction (Wildenthal)

€0a.. = —3.94780
- -3.16354

S1/2

€0, =1.64658

€

Measured relative to 1°0 core
Note 0d,, is unbound

!‘;d. Nuclear Theory
[/ X1

(0d,,0d,,;J =0,T =1
(0d,,0d,,;J =0,T =1
(0d,,0d,,;J =0,T =1
(15,15, J =0,T =1
(15,15, =0,T =1
(0ds,,0ds,,3J =0,T =1

NNPSS: July 9-11, 2007

V]0ds,,0ds,,;J =0,T =1) = -2.8197
V|0ds,,0ds,,;J = 0,T =1) = -3.1856
V|1s,,1s,,;J =0,T =1) = —1.0835
15,515,550 = 0,7 =1) = =2.1246

0dy,,0d;,,;J =0,T =1) = —1.3247
V]0ds,,0d;,,;J =0,T =1) = —2.1845

32



Simple application of the shell model, cont.

Example:

Finding the eigenvalues

« Set up the Hamiltonian matrix

— We can use all 14 J =0 states, and
we’ll recover all 14 J-states

— But for this example, we’ll use the

two-particle J=0 states

1(0ds5)*)sg (1812 )50
—-10.7153 -1.0835

H=| -1.0835 -8.4517
-3.1856 -1.3247

!‘5‘. Nuclear Theory
[/ X1

1(0d32)%) -0
-3.1856
—-1.3247

1.1087

NNPSS: July 9-11, 2007

,|+

4+
r

2+

0+

-12.171

0.000
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What about heavier nuclei?

- Above A ~ 60 or so the number of configurations just gets to be
too large ~ 109!

- Here, we need to think of more approximate methods

- The easiest place to start is the mean-field of Hartree-Fock

— But, once again we have the problem of the interaction
+ Repulsive core causes us no end of grief!!
+ So still need effective interactions!
« At some point use fitted effective interactions like the Skyrme force

.‘vd Nuclear Theory NNPSS: JUly 9-11 , 2007 34
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Hartree-Fock

There are many choices for the mean field, and Hartree-Fock is one
optimal choice

We want to find the best single Slater determinant @, so that
(@, |[H] D) = minimum (6D, |H|D, ) + (Dy|H|0P,) =0 «——

(D[

A

D, =1_[al.+

i=1

Thouless’ theorem
— Any other Slater determinant ® not orthogonal to ®, may be

written as
Ecml m l

- Where i is a state occupied in ®, and m is unoccupied
— Then

6D, ECW a‘a,

0)

D =exp

D)

and (D,|6D,) E C,(Dolasa|D,

NNPSS: July 9-11, 2007 35
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Hartree-Fock

|
H=Y oo OV
i ij

1
- ri—rj‘)=T+5iEjVij

Let i,j,k, [ denote occupied states and m,n,o,p unoccupied states
After substituting back we get

occupied

(mftii)+ Y (imV]i), =0

J

This leads directly to the Hartree-Fock single-particle Hamiltonian / with
matrix elements between any two states o and g

occupied

(alrig)+ X(jalv]ip),

(alh|p)

={a[T1B)+(alU|B)

NNPSS: July 9-11, 2007
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Hartree-Fock

We now have a mechanism for defining a mean-field
— It does depend on the occupied states

— Also the matrix elements with unoccupied states are zero, so the first order
1p-1h corrections do not contribute

occupied

(mfTliy+ Y {imV ji), = (m|n|i)=0

J
We obtain an eigenvalue equation (more on this later)

)
£ = (o o) = B+ S, =y Sl + ]

i ij i

h‘l> =€,

l

e Energies of A+1 and A-1 nuclei relative to A

EA+1_EA=8m EAI_EA=_€

| ) Nuclear Theory RS NNPSS: July 9-11, 2007 )
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Hartree-Fock — Eigenvalue equation

Two ways to approach the eigenvalue problem
— Coordinate space where we solve a Schrddinger-like equation
— Expand in terms of a basis, e.g., harmonic-oscillator wave function

Expansion
— Denote basis states by Greek letters, e.g., a

= Ecia a
C,a =9, cmcl =0,
J B

— From the variational principle, we obtain the eigenvalue equation

occupied

2 (elmig)+ Y{ailVIBi), [C;y = £C.
B J

or

2 (alhlB)Cyy =£C

B
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Hartree-Fock —
Solving the eigenvalue equation

- As | have written the eigenvalue equation, it doesn’t look to useful
because we need to know what states are occupied

«  We use three steps

1. Make an initial guess of the occupied states & the expansion coefficients C,,
For example the lowest Harmonic-oscillator states, or a Woods-Saxon and C, =6,
2. With this ansatz, set up the eigenvalue equations and solve them

3. Use the eigenstates [i) from step 2 to make the Slater determinant ®,, go
back to step 2 until the coefficients C,, are unchanged

The Hartree-Fock equations are solved self-consistently

e l./_/_r

[ (X"} Nuclear Theory _ -

: NNPSS: July 9-11, 2007 .
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_2h—2v o,(r ("““ﬁe}(p r,)V(r, - r,))¢,(r,)d’ ) Ef(p )V (e = 1), (r)gi(r,)d’r, = £,

0] Nuclear Theory

p XX >

Hartree-Fock — Coordinate space

- Here, we denote the single-particle wave functions as ¢,(r)

occupied

_

Direct or Hartree term: Uy, Exchange or Fock term: Uy

- These equations are solved the same way as the matrix eigenvalue
problem before
1. Make a guess for the wave functions ¢.(r) and Slater determinant @,
2. Solve the Hartree-Fock differential equation to obtain new states ¢.(r)
3. With these go back to step 2 and repeat until ¢,(r) are unchanged

Again the Hartree-Fock equations are solved self-consistently

2 NNPSS: July 9-11, 2007
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Hartree-Fock

Hard homework problem:

M. Moshinsky, Am. J. Phys. 36, 52 (1968). Erratum, Am. J. Phys. 36, 763
(1968).
Two identical spin-1/2 particles in a spin singlet interact via the Hamiltonian

H=4(p} 4 7)+ 403+ 2) ¢ A -5]

Use the coordinates 7=(-%)v2 and R=(+%)/v2 to show the exact
energy and wave function are

E =31+ +1)

QKnR)=E§%ﬁem%—Rﬁém

3/4

exp

A2x +1

_1&X+1rj

2h

Note that since the spin wave function (S=0) is anti-symmetric, the spatial
wave function is symmetric
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Hartree-Fock

Hard homework problem:

- The Hartree-Fock solution for the spatial part is the same as the Hartree
solution for the S-state. Show the Hartree energy and radial wave function

are.
E, =3hx+1
N TN 1 1
Xt X+l 5 X+l 5
Ylr,r, )= exp| — r”lexp| — .
Uin) =\ =0 Ay 1) A i— 2)

20

E/h

0 +—————————————————————————————
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Hartree-Fock with the Skyrme interaction

In general, there are serious problems trying to apply Hartree-Fock with
realistic NN-interactions (for one the saturation of nuclear matter is

incorrect)
Use an effective interaction, in particular a force proposed by Skyrme

vy = 1o(1+ x,P, )O(E - )+ %q(n xP,)

t2(1+x2po)2ll_(6l AR _fz)zii(ﬁl )+ W(648,) (¥, -V, ) x O - )=

(7 - 5)0(7, - )
— P_is the spin-exchange operator

The three-nucleon interaction is actually a density dependent two-body,
so replace with a more general form, where a determines the

incompressibility of nuclear matter

1 N
gt3(1+ x3P0)5(r1 —rz)p ((q + rz)/2)

NNPSS: July 9-11, 2007
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Hartree-Fock with the Skyrme interaction

« One of the first references: D. Vautherin and D.M. Brink, PRC 5, 626
(1972)

- Solve a Schrédinger-like equation

2
RV U, (t)-iw, () (6 X 5) o. (7) =£0! (7) % Labels protons

o, (§) "
— Note the effective mass m*

n* /A 1 }
2 @) 2+ 3P0+ gl mn)e (7

— Typically, m™ < m, although it doesn’t have to, and is determined by the
parameters ¢, and ¢,
The effective mass influences the spacing of the single-particle states

The bias in the past was for m*/m ~ 0.7 because of earlier calculations with realistic
interactions
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Hartree-Fock calculations

- The nice thing about the Skyrme interaction is that it leads to a
computationally tractable problem
— Spherical (one-dimension)
— Deformed
Axial symmetry (two-dimensions)
No symmetries (full three-dimensional)
- There are also many different choices for the Skyrme parameters
— They all do some things right, and some things wrong, and to a large degree
it depends on what you want to do with them
— Some of the leading (or modern) choices are:
M, M. Bartel et al., NPA386, 79 (1982)
SkP [includes pairing], J. Dobaczewski and H. Flocard, NPA422, 103 (1984)

SkX, B.A. Brown, W.A. Richter, and R. Lindsay, PLB483, 49 (2000)
Apologies to those not mentioned!

— There is also a finite-range potential based on Gaussians due to D. Gogny,
D1S, J. Dechargé and D. Gogny, PRC21, 1568 (1980).

- Take a look at J. Dobaczewski et al., PRC53, 2809 (1996) for a nice
study near the neutron drip-line and the effects of unbound states
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Nuclear structure

- Remember what our goal is:

— To obtain a quantitative description of all nuclei within a microscopic frame
work

— Namely, to solve the many-body Hamiltonian:

—>2

H=}; w(i-7) —> H- ME i =+ U(n) |43 Vil =7) = S U(7)

<] i<j

2m

Residual interaction

Perturbation Theory
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Nuclear structure

- Hartree-Fock is the optimal choice for the mean-field potential U(r)!

— The Skyrme interaction is an “effective” interaction that permits a wide range
of studies, e.g., masses, halo-nuclei, etc.

— Traditionally the Skyrme parameters are fitted to binding energies of doubly
magic nuclei, rms charge-radii, the incompressibility, and a few spin-orbit
splittings

«  One goal would be to calculate masses for all nuclei

— By fixing the Skyrme force to known nuclei, maybe we can get 500 keV
accuracy that CAN be extrapolated into the unknown region

This will require some input about neutron densities — parity-violating electron
scattering can determine <r?> -<r®>,.

— This could have an important impact

!‘5‘. Nuclear Theory
[/ X1
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Hartree-Fock calculations

Permits a study of a wide-range of nuclei, in particular, those far from
stability and with exotic properties, halo nuclei

°
H. Sagawa, PRC65, 064314 (2002)
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p (fm3)

The tail of the radial density
depends on the separation

energy
S. Mizutori et al. PRC61, 044326 (2000)

g=-5MeV |J
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Drip-line studies
J. Dobaczewski et al., PRC53, 2809
(1996)
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What can Hartree-Fock calculations tell
us about shell structure?

« Shell structure

— Because of the self-consistency, the shell structure can change from nucleus
to nucleus

Niclear Shell Structure

b - — i As we add neutrons, traditional
By shell closures are changed, and

—
™ ne
: =23

e Z may even disappear!
hH.' X = = 0 -
g a This is THE challenge in trying to
e\ N=t 2 ; predict the structure of nuclei at
Az — —1g the drip lines!
932
"~ verydiffuse | : n:;;::n I around the |
surface | harmonic |  axotic nuclel/ valley of
neutron d'ip,“',‘,c,. ,O,Sd,l,hem, { h"‘p.c”,w,c,l}..i -Jie ;flablllly |

J. Dobaczewski et al., PRC53, 2809 (1996)
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Beyond mean field

- Hartee-Fock is a good starting approximation
— There are no particle-hole corrections to the HF ground state

occupied

(m{Tli)+ 3 (mP] i), = (mlA]i) =0

J

— The first correction is

Ly (G |mn) (mnlV|),
444 ¢ +€&,-¢€, €,

- However, this doesn’t make a lot of sense for Skyrme potentials

— They are fit to closed-shell nuclei, so they effectively have all these higher-
order corrections in them!

- We can try to estimate the excitation spectrum of one-particle-one-hole
states — Giant resonances

— Tamm-Dancoff approximation (TDA) } You should look these up!

. . A Shell Model Description of Light Nuclei, I.S. Towner
— RandO m-P haSe apprOX| mation (R PA) The Nuclear Many-Body Problem, Ring & Schuck
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Nuclear structure in the future

", Monte
& | carlo Shell
9 Model
o}

—
o,

=i

Ab initio methods 28 neutrons With newer methods and
2 S 20 powerful computers, the future
2 of nuclear structure theory is
bright!
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