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Pasta Phase in Neutron Stars
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Equation of State for Pasta
In earlier work (by Horowitz, Perez Garcia, and Piekarewicz) the
structure and spin-independent neutrino response of the pasta
was studied via purely classical simulation.

H = T + ∑
i<j

Vnuc(i , j)

Vnuc(i,j) is the two body interaction term given as

Vnuc(i , j) = ae−r2
ij /Λ +

[
b + cτz(i)τz(j)

]
e−r2

ij /2Λ + Vcoulomb(i , j)

I am interested in generalizing this work to the study of the
spin-dependent response.

To do so, one must (at least) understand fermionic correlations
induced by the Pauli exclusion principle.
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We incorporate Pauli exclusion principle by adding a
fictitious momentum-dependent Pauli potential

Hnew = T + ∑
i<j

Vnuc(i , j) + VPauli(i , j)

We will focus our attention to this added term (VPauli).
I We will discuss the existing Pauli potential.

We will show that the existing model does not reproduce
most of the properties of a quantum free Fermi gas.

I Proposed a modified Pauli potential to overcome this
shortcomings.

(This work has been submitted to Phys. Rev. C (archieve nucl.-th/0702086))
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Properties of a Free Fermi Gas
A zero-temperature quantum free Fermi gas can be described
by a Slater determinant

ΨFG(p1, . . . , pN ; r1, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕp1(r1) . . . ϕp1(rN)

. . . . .

. . . . .

. . . . .
ϕpN (r1) . . . ϕpN (rN)

∣∣∣∣∣∣∣∣∣
Properties of the Slater determinant:

I No two fermions can have the same momentum.
I No two fermions can have the same spatial coordinates
I No fermion can have a momentum larger than pF

The kinetic energy, correlation function,and momentum
distribution of a Free Fermi gas
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Pauli Potential by Wilets and collaborators

VPauli(p1, . . . , pN ; r1, . . . , rN) =
N

∑
i<j=1

V0 exp(−s2
ij /2)δτi τj δσi σj

sij is the dimensionless phase-space distance between two particles

s2
ij ≡

|pi−pj |2

p2
0

+ |ri−rj |2

r2
0

It vanishes for different fermionic species

When sij is small, the Pauli potential is big so the particles are
penalized for getting too close in phase space.

When sij is large, Pauli potential is small so particles are no
longer penalized

No penalty, if either rij or pij is large

This is less restrictive than a Slater determinant
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Model parameters (V0, p0, q0) are determined by fitting to the kinetic
energy of a quantum free Fermi gas at various densities.

Simulation results (red circles) are in good agreement with exact
(black line).
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The Pauli potential does not provide enough suppression
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The system crystallizes!

Jutri Taruna and Jorge Piekarewicz Semi Classical Simulation of the Pauli Potential



Introduction Free Fermi Gas Pauli Potential Conclusion

0 5 10 15 20
z=p

F
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g(
z,τ

)

Maruyama
Exact

0.0 0.2 0.4 0.6 0.8 1.0 1.2
q=p/p

F

0.0

1.0

2.0

3.0

4.0

5.0

6.0

f(q
,τ

)

N=1000
ρ=ρ0

The Pauli potential (blue) gives a “reasonable” results in
mimicking Fermi gas momentum distribution (black).

The Pauli potential does not provide enough suppression
between particles at short distances.

The system crystallizes!

Jutri Taruna and Jorge Piekarewicz Semi Classical Simulation of the Pauli Potential



Introduction Free Fermi Gas Pauli Potential Conclusion

The underlying problem in Wilet’s Pauli potential:

s2
ij ≡

|pi − pj |2

p2
0

+
|ri − rj |2

r2
0

I Pauli potential penalizes particles when they are close in
phase space and no penalty when they are far apart.

I However, if particles are close in space (rij � 1), as long as
momentum between the particles is large (pij � 1) (or visa
versa) the Pauli potential vanishes.

In disagreement with Slater determinant properties. Determinant
vanishes when two fermions occupy the same location or have
the same momentum.

Proposed a new potential to solve this problem.
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New Model for Pauli Potential

VPauli(p1, . . . , pN ; r1, . . . , rN) =
N

∑
i<j

VA e−rij /ro δσi σj δτi τj

+
N

∑
i<j

VB e−pij/po δσi σj δτi τj +
N

∑
i=1

VC

1 + e−η(q2
i −1)

The first term penalizes particles if they get too close in space.

The second term penalizes particles if they get too close in
momentum space.

The last term provides a cut-off for the p > pF region.

Model parameters are determined by fitting to the properties of a
quantum free Fermi gas.
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Model parameters (VA, VB ,VC ,ro, po,η) are determined by fitting to
the kinetic energy of a quantum free Fermi gas at various densities.

Our model is in good agreement with the analytic prediction.
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The new Pauli potential reproduces accurately the momentum
distribution of a quantum free Fermi gas.
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The new Pauli potential reproduces accurately the two-fermion.
correlation function of a quantum free Fermi gas.

The potential gives enough suppression at r=0.

There is no crystallization at low (or any) densities.
Jutri Taruna and Jorge Piekarewicz Semi Classical Simulation of the Pauli Potential



Introduction Free Fermi Gas Pauli Potential Conclusion

Conclusions & Future Study
To include spin into our calculation we need to add a Pauli term
into our classical Hamiltonian.

The “old” Pauli potential fails to accurately describe all properties
of a quantum free Fermi gas.

We proposed a new Pauli potential that has successfully
mimicked the Pauli exclusion principle

We add this new spin dependent potential to our pasta
Hamiltonian and proceed (after re-fitting) to calculate the spin
dependence response of the nuclear pasta.
Work is still in progress ...
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