Charm physics DN interactions in nuclear matter

Clara Estela Jiménez Tejero

National Nuclear Summer School 2007, Tallahassee, Florida

Advisors: I. Vidaña, A. Ramos

T. Mizutani, A. Ramos, hep-ph/0607257

J.Hofmann and M.F.M.Lutz, Nucl. Phys. A763, 90 (2005)

Index

- I. Discovery of charm
- II. Motivation
- III. Coupled Channel Approach model for solving DN interactions
 - -Results in free space
- IV. Conclusion and future perspectives
- V. Panda experiment at GSI (if I have time)

Charmonium discovery

e⁺e⁻ annihilation

Very narrow peaks -> very long lifetimes (10⁻²⁰s):
 thousand of times longer than expected!
 New kind of property → forth type of quark!

Decay of J/psi lowest level in lighter particles

-> 90% decay to lighter quark particles (pions, kaons)

-> Rarely decays to an electron and a positron (or muon and antimuon)

Example of decay $\Psi' \rightarrow J/\psi + \pi^+ + \pi^-$ Followed by $J/\psi \rightarrow e^+e^-$

Creation of charmed particles

Charm quarks combine with lighter quarks (u, d, s) to form either barions or mesons

Production of charmed particles in the bubble chamber (SLAC) in 1980

... production of charm particles at present

Can be produced in pairs (D⁺,D⁻)

• in heavy ion experiments:

 $NN \rightarrow NND^+D^ E_{\rm th} = 2.8 \,\,{\rm GeV}$

• or antiproton anhilation experiments (PANDA at FAIR) on protons and nuclei:

 $\bar{p}N \rightarrow D\bar{D}$ $E_{\rm th} = 6.5 \,\,{\rm GeV}$

Motivation D and Dbar in the medium

Why is important to understand the interaction of charmed mesons in a hadronic medium?

If the mass of the D (and Dbar) mesons gets reduced appreciably in the medium (cold or hot), this would provide a conventional hadronic physics explanation to explain J/Ψ supression (attributed to be a signal for the formation of a Quark-Gluon Plasma)

 $J/\Psi \ N \to D \ \bar{D} \ N \qquad \qquad J/\Psi \ \pi \to D \ \bar{D}$

Hints that a D Dbar meson-pair could feel attraction: an open charm enhancement has been observed in nucleus-nucleus collisions by the NA50 Collaboration

 $N N \to N N D \overline{D}$

Why do we believe in the "couple channel approach" model that we use?

Other methods like QCDSR and NMFA become innapropriate when the 2-body interaction:

→Strong

 \rightarrow dominated by intermediate bound states or resonances and/or

→strongly coupled to other channels

KN and DN are "similar" systems:

 \rightarrow Apparent similarity in their coupled channel nature

by their association with the Lambda resonances:

 \rightarrow Presence of the $\Lambda_{c}(2593)$ (udc)

(plays a similar role as the $\Lambda(1405)$ (uds) in KN dynamics)

D and Dbar mesons:	$egin{array}{rcl} D^+:&c\;ar{d}\ D^0:&c\;ar{u} \end{array}$	$ar{D}^0: ar{c} \ u \ D^-: ar{c} \ d$	$M(D) \sim 1870 \text{ MeV}$
Similar to Kbar K:	$ar{K}^0:\ s\ ar{d}\ K^-:\ s\ ar{u}$	$egin{array}{cccc} K^+:&ar{s} & u\ K^0:&ar{s} & d \end{array}$	$M(K) \sim 495 { m ~MeV}$
$1332 \mathrm{MeV}$	$1433 { m MeV}$	$2591 { m MeV}$	$2809 \mathrm{MeV}$
$\pi \Sigma$	$\bar{K}N$	$\pi \Sigma_c$	$\overline{D}N$
Λ	(1405)	$\Lambda_c(2593)$	

D mesons in symmetric nuclear matter: DN couple-channel equations approach

- First step: (1)
- -> Solving Bethe-Salpeter equation in free space

- Second step: (2)
- Solving Bethe-Salpeter equation in nuclear medium.

(1)
$$T = V + V G T$$

(2) $\tilde{T}(\rho) = V + V \tilde{G}(\rho) \tilde{T}(\rho)$

$$\tilde{T}(\rho) = T + T (\tilde{G}(\rho) - G) \tilde{T}(\rho)$$

-> T is the transition operator matrix.

-> The propagator G, diagonal matrix in which every element is the product of single-particle propagator for a meson and a barion.
 -> The potential V, whose elements are Weinberg-Tomozawa type meson-baryon interactions.

In-medium effects

In medium effects are contained in the propagator $\tilde{G}(\rho)$

Medium: isosymmetric nuclear matter (nucleons, Np=Nn)

Pauli blocking on intermediate nucleons: consequence of Pauli principle, prevents the scattering to intermediate nucleon states below Fermi momentum, pf.

Dressing of mesons and baryons:

Non perturbative strong interaction at low energies -> particles of intermediate loops interact through strong force with the nucleons of the Fermi sea, and their properties are modified with respect to those in free space.

Self-consistent coupled channels method: Bethe-Salpeter equation

$$\begin{split} T_{ij} &= V_{ij} + V_{ik}G_k T_{kj} \\ T_{ij} &= V_{ij} + V_{ik}G_k (V_{kj} + V_{km}G_m T_{mj}) \\ T_{ij} &= V_{ij} + V_{ik}G_k V_{kj} + V_{ik}G_k V_{km}G_m (V_{mj} + V_{\ln}G_n T_{nj}) \\ T_{ij} &= V_{ij} + V_{ik}G_k V_{kj} + V_{ik}G_k V_{km}G_m V_{mj} + V_{ik}G_k V_{km}G_m V_{\ln}G_n T_{nj} \end{split}$$

The sectors of our interest: In S-wave and J^P=(1/2)⁻, two different channels

First channel with seven states:

 $(C = 1, I = 0, S = 0) : \pi \sum_{c} (2589), DN(2810), \eta \Lambda_{c} (2835),$ $K \Xi_{c} (2960), K \Xi_{c}^{'} (3071), D_{s} \Lambda (3085), \eta' \Lambda_{c} (3245)$

Second channel with eight states:

 $(C = 1, I = 1, S = 0) : \pi \Lambda_c(2425), \pi \Sigma_c(2589), DN(2810), K \Xi_c(2960),$ $\eta \Sigma_c(3005), K \Xi_c'(3071), D_s \Sigma(3160), \eta' \Sigma_c(3415)$

$$\begin{split} & \varphi_{[9]} = \tau \cdot \pi (139) + \alpha^{\dagger} \cdot K(494) + K^{\dagger}(494) \cdot \alpha + \eta (547)\lambda_{8} + \sqrt{\frac{2}{3}} \mathbf{1} \eta'(958), \\ & \varphi_{[3]} = \frac{1}{\sqrt{2}} \alpha^{\dagger} \cdot D(1867) - \frac{1}{\sqrt{2}} D'(1867) \cdot \alpha + i\tau_{2} D^{(s)}(1969), \\ & \varphi_{[1]} = \eta_{c}(2980), \\ & \tau = (\lambda_{1}, \lambda_{2}, \lambda_{3}), \qquad \alpha^{\dagger} = \frac{1}{\sqrt{2}} (\lambda_{4} + i\lambda_{5}, \lambda_{6} + i\lambda_{7}). \end{split}$$

$$\begin{aligned} & V_{\mu}^{[9]} = \tau \cdot \rho_{\mu}(770) + \alpha^{\dagger} \cdot K_{\mu}(894) + K_{\mu}^{\dagger}(894) \cdot \alpha \\ & + \left(\frac{2}{3} + \frac{1}{\sqrt{3}} \lambda_{8}\right) \omega_{\mu}(783) + \left(\frac{\sqrt{2}}{3} - \sqrt{\frac{2}{3}} \lambda_{8}\right) \phi_{\mu}(1020). \end{aligned} \end{aligned}$$

$$\begin{aligned} & \text{vector meson fields} \end{aligned}$$

$$\begin{aligned} & \sqrt{2}B_{[8]} = \tau \cdot \Sigma(1193) + \alpha^{\dagger} \cdot N(939) + \Xi^{t}(1318) \cdot \alpha + \Lambda(1116)\lambda_{8}, \\ & \sqrt{2}B_{[6]} = \frac{1}{\sqrt{2}} \alpha^{\dagger} \cdot \Xi_{c}(2576) + \frac{1}{\sqrt{2}} \Xi_{c}^{t}(2576) \cdot \alpha + \Sigma_{c}(2452) \cdot (i\tau\tau_{2}) \\ & + \frac{\sqrt{2}}{3} (1 - \sqrt{3}\lambda_{8}) \Omega_{c}(2698), \\ & \sqrt{2}B_{[3]} = \frac{1}{\sqrt{2}} \alpha^{\dagger} \cdot \Xi_{c}(2469) - \frac{1}{\sqrt{2}} \Xi_{c}^{t}(2469) \cdot \alpha + i\tau_{2}\Lambda_{c}(2285), \\ & \sqrt{2}B_{[3]} = \frac{1}{\sqrt{2}} \alpha^{\dagger} \cdot \Xi_{c}(3440) - \frac{1}{\sqrt{2}} \Xi_{cc}^{t}(3440) \cdot \alpha + i\tau_{2}\Omega_{cc}(3560). \end{aligned}$$

t-channel exchange of vector mesons:

$$V_{ij}(q_i, q_j; \sqrt{s}) = \sum_{V \in [16]} \frac{g^2 C_{ij}^V \bar{u}(\vec{p}_i) \gamma^\mu \left[g_{\mu\nu} - \frac{k_\mu k_\nu}{m_V^2} \right] \frac{1}{t - m_V^2} (q_i + q_j)^\nu u(\vec{p}_j),$$

universal vector coupling constant

chiral symmetry in the light sector imposed $\rightarrow g^2 = \frac{m_V^{\text{light}}}{2f^2}$

 $m_V \sim 1 \text{ GeV} \sim m_\rho, m_\omega, m_{K^*}$ in non-charm exchange transitions $(DN \to DN, D_sY)$ $m_V \sim 2 \text{ GeV} \sim m_{D^*}, m_{D_s^*}$ in charm exchange transitions $(DN \to \pi\Sigma_c, K\Xi_c)$ \rightarrow With these approximations and projecting in s-wave:

-> With these approximations and projecting in s-wave:

$$\begin{split} V_{ij}^{I}(\sqrt{s}) &= -\frac{\kappa C_{ij}}{4f^2} \left(2\sqrt{s} - M_i - M_j\right) \left(\frac{M_i + E_i}{2M_i}\right)^{1/2} \\ &\times \left(\frac{M_j + E_j}{2M_j}\right)^{1/2}. \end{split}$$

 $\kappa = 1$ (non-charm exchange) = 1/4 (charm exchange)

$$\rightarrow$$
 W.T interaction

Coefficients C=0, S=0

I=0

I=1

	$\pi \Sigma_c$	DN	$\eta \Lambda_c$	$K \Xi_c$	$K\Xi_c'$	$D_s\Lambda$	$\eta' \Lambda_c$		$\pi \Lambda_c$	$\pi \Sigma_c$	DN	$K \Xi_c$	$\eta \Sigma_c$	$K \Xi_c'$	$D_s\Sigma$	$\eta' \Sigma_c$
$\pi \Sigma_c$	4	$\sqrt{rac{3}{2}} \kappa$	0	0	$\sqrt{3}$	0	0	$\pi \Lambda_c$	0	0	$\sqrt{rac{3}{2}}\kappa$	1	0	0	0	0
DN		3	$-rac{1}{\sqrt{2}}\kappa$	0	0	$-\sqrt{3}$	$-rac{1}{\sqrt{3}}\kappa$	$\pi \Sigma_c$		2	1κ	0	0	$\sqrt{2}$	0	0
$\eta \Lambda_c$			0	$-\sqrt{3}$	0	$-\sqrt{\frac{2}{3}} \kappa$	0	DN			1	0	$\frac{1}{\sqrt{6}} \kappa$	0	-1	$-rac{1}{\sqrt{3}}\kappa$
$K \Xi_c$				2	0	$-rac{1}{\sqrt{2}}\kappa$	0	$K \Xi_c$				0	0	0	$\sqrt{rac{3}{2}}\kappa$	0
$K\Xi_c'$					2	$-\sqrt{rac{3}{2}}\kappa$	0	$\eta \Sigma_c$					0	$-\sqrt{3}$	$\sqrt{rac{2}{3}} \kappa$	0
$D_s\Lambda$						1	-1κ	$K\Xi_c'$						0	$-rac{1}{\sqrt{2}}\kappa$	0
$\eta' \Lambda_c$							0	$D_s\Sigma$							1	$\frac{1}{\sqrt{3}} \kappa$
								$\eta' \Sigma_c$								0

 $L_i \cdot L_j = [kinetic term] \cdot C_{i,j}$

... solving T matrix in the free space ...

Propagator in free space

$$G_{i}(\sqrt{s}) = i \int \frac{d^{4}k}{(2\pi)^{4}} \frac{M_{i}}{E_{i}} \left(\frac{1}{k^{0} - E_{i}(k) + i\varepsilon} - \frac{1}{k^{0} - E_{i}(k) - i\varepsilon} \right)$$

$$\times \frac{1}{((Q^{0} - k^{0})^{2} - (\vec{Q} - \vec{k})^{2} - m_{i}^{2} + i\varepsilon)} \quad \text{all 4-momenta are given in the lab frame}$$

 $s = (Q^0)^2 - (Q)^2 \rightarrow Energy of mass frame$

 E_i and M_i is the energy and mass of the baryon m_i the mass of the meson

Free space DN amplitudes

T matrix in the nuclear matter ...

Summary

$D N \rightarrow Intermediate states \rightarrow DN$

Conclusions ...

-> DN interaction in coupled channels from a model (inspired on the work of Hofmann and Lutz)

-> In free space, we generate the $\Lambda_c(2595)$ dynamically in I=0. The same interaction generates a I=1 wide resonance which we denote as $\Sigma_c(2770)$

... and Future

-> We will implement the medium effects on the DN amplitudes (Pauli blocking, self-consistent dressing of D meson, dressing of π) self-consistently.

 D_s also develops a self-energy

[M.F.M.Lutz, and C.L.Korpa, Phys. Lett. B 633,43 (2006)]

-> Solve C=1 S=1 D_sN problem in the medium and incorporate D_s self-energy in our coupled-channel problem (DN strongly coupled to D_sY)

Question time

... so early in the morning

thanks for your patience

• • •

http://www-panda.gsi.de/auto/_home.htm

Characteristics **HESR** 10^11stored antiprotons 1.5 -14.5 GeVL= 2 x 1032cm-2s-1 $\delta p/p \ge 10-5\sigma x \ge 50 \mu m$

211

C

