Continuum shell model calculations for nucleon capture at astrophysical energies

> Janina Grineviciute Western Michigan University

$^{7}\text{Be}(p,\gamma)^{8}\text{B}$

Production rate of ⁸Be solar neutrinos:

- accuracy of stellar models
- neutrino mixing and nature of weak interaction

desired reaction rate uncertainty less than 5%

Dependance on temperature of energy production rates

CNO cycle

figure taken from H. Schatz (2004)

4 CNO cycles

figure taken from H. Schatz (2004)

$^{14}N(p,\gamma)^{15}O$

Slowest reaction in CNO cycle

- controls duration of hydrogen burning
- determines main sequence turnoff globular cluster ages
- determines CNO neutrino flux in the Sun

Initial abundance of C, N,O is mostly converted into ¹⁴N

Turn off luminosity – age of globular clusters

Proton capture reactions

Crossections are extremely low \Rightarrow measure as low in energy as possible, then extrapolate to Gamow window

RCCSM advantages

- Provides coupled-channels solutions for bound and unbound wave functions
- Wave functions antisymmetric and contain no spurious components
- Bound states and continuum states are orthogonal

RCCSM coordinates

RCCSM input

- Oscillator size parameter $v_0 = mw/\mathbb{R}$
- Desired states of the A-1 core nuclei
- Realistic translationally invariant interaction

Interaction

- A fit to Cohen-Kurath interaction and Reid soft core g-matrix elements
- Spin orbit force
- Tensor force
- Skyrme interaction

Channel wave functions within channel radius a_c

 $\Psi_{J_{g}} = \sum_{J_{A} c \bar{d} \bar{j} \bar{n} \neq 0} f_{\bar{n} \bar{l} \bar{j} J_{A} \alpha J_{g}} \left[a_{\bar{n} \bar{l} \bar{j}}^{+} \otimes \left[\alpha J_{A} \right]^{J_{g}} + \sum_{\Omega} d_{\beta} \left[\beta J_{B} \right]^{J_{g}} \right]$

Calculations

- Oscillator size parameter, interaction
- R matrix radii
- Calculate matrix elements of interaction
- CM transformation
- R matrix techniques to get f and d coefficients

FIG. 5. *S* factor for ${}^{7}\text{Be}(p, \gamma){}^{8}\text{B}$. Line is $1.293 \times V_{\text{LS}}$ calculation with *E*1 contribution scaled by 0.726. Circles, ×'s, squares, and diamonds are BE3L, BE1, BE3S, and BE2 data from Ref. [1].

Dean Halderson (2006)

S factor for the transition to the $3/2^+$ (6.79MeV) state in ¹⁵O

 $1/2^+_2 \rightarrow 1/2^-$ transition

• Initial state
$$[{}^{14}N(1_1^+) \otimes s_{1/2}]^{J_s=1/2}$$

• **9.5.**
$$A[{}^{14}N(1_1^+) \otimes p_{3/2}]^{J_{B}=1/2} +$$

 $B[^{14}N(1_1^+) \otimes p_{1/2}]^{J_s = 1/2}$ $\langle f \| \mathbf{r} \| i \rangle = -0.072R \quad \text{Cohen and Kurath } 0.147R$

Angular distribution and analyzing power

Conclusions

- Transition to 3/2+ agrees well with existing data
- No significant contributions from subthreshold resonance
- Low energy S factor is nearly flat
- S(30) = 1.625 keVb