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Lecture 2

just kidding



•Hydrodynamics has become the 
“language” of RHIC physics

•Essential to be familiar with the 
concepts and phenomena at LHC

•“Three” dimensions of hydro
• Initial Conditions - Thermalization & Geometry

• Hydrodynamic evolution / Equation of state

• Freezeout to Hadrons

•The importance of viscosity
• Is there an intrinsic scale to the dynamics?

Goal



•This is supposed to be an “easy” 
talk mathematically
• I don’t “do” math (but I like to talk about it!)

•It will also be as conceptually clear 
as possible
• Assume nothing is obvious (it’s not!)

• Ask, and ye shall receive (a “thoughtful” 
answer from me or someone in the audience!)

•I want to leave you with a concrete 
space-time image of the dynamics

Hope Springs Eternal



Phenomena @ RHIC



Final
particles

What is
this?

Bang!Colliding
gold ions

RHIC: The Movie



Three Stages

Initial
Conditions

Dynamical
Evolution

Hadronic
Freezeout
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Thermalization

A÷ENN/2 A÷ENN/2

In our field, we have to make the imaginative leap
from two contracted nuclei (clusters of nucleons)

composed of nucleons (clusters of “partons”)
transforming into a “fireball” (cluster of ??)



Thermalization
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transforming into a “fireball” (cluster of ??)



Fluids

All we need to assume is:
1. Infinitessimally small cells are locally thermalized
2. The cells are interacting rapidly with each other

Then we can define a temperature, energy density, and pressure

http://upload.wikimedia.org/math/6/3/1/631a7db395159543735dacba9444fdd1.png

http://upload.wikimedia.org/math/6/3/1/631a7db395159543735dacba9444fdd1.png
http://upload.wikimedia.org/math/6/3/1/631a7db395159543735dacba9444fdd1.png


Thermalization

The usual picture: 
particles start with an arbitrary velocity distribution,

but over time “equilibrate” or “thermalize”,
maximizing entropy by choosing the 

most probable velocity (Boltzmann) distribution



Continuum Limit

Boltzmann equation:
particle collisions

Fluid:
no particles



Stress Energy Tensor

Tµν ≡ (ε + p)uµuν − gµνp

ε(xµ)

p(xµ)

uµ(xµ)

Energy density

Pressure

Relativistic velocity
= γ(1, βx, βy, βz)

in the local
fluid rest frame:

pressure is
isotropic!

Tµν =
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In continuum limit, we define bulk variables



Hydrodynamic Equations

∂µTµν ≡

∂Tµν

∂xµ

= 0

Given all the assumptions above,
ideal hydrodynamics (w/ no baryons) is a coupled set of 

non-linear differential equations which merely
express that energy/momentum is conserved locally

4 equations for 5 functions of x,y,z,t:              ,
since                 .

(ε, p, "u)
uµu

µ
= 1



Relativistic Euler equation

∂µTµν ≡

∂Tµν

∂xµ

= 0

Tµν ≡ (ε + p)uµuν − gµνp

Pressure gradients drive
changes in velocity (i.e. F=ma)

Hydrodynamic expansion of strongly-coupled 6Li ions released from a trap (O’Hara et al 2002)



Hydrodynamic Phenomena

for more fun: http://www.galleryoffluidmechanics.com/

Simple equations of motion
applied to (viscous) fluids:

leads to a wide variety
of phenomena in real world

http://www.galleryoffluidmechanics.com/waves/hjump.htm
http://www.galleryoffluidmechanics.com/waves/hjump.htm


Vortex Separation

Vortex separation due to viscous flow past a barrier

v

http://www.galleryoffluidmechanics.com/vortex/dvm.htm

http://www.galleryoffluidmechanics.com/vortex/dvm.htm
http://www.galleryoffluidmechanics.com/vortex/dvm.htm


Equation of State (EOS)
Need one more equation to close the system.

Nothing is required by the mathematics, so
we can make a choice

The trace of the stress energy tensor is
Lorentz invariant: if non-zero it implies a fixed
scale in the problem.  It also must be positive.

Tµ

µ = ε − 3p ≥ 0 → p ≤ ε/3Tµν =




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



Speed of Sound

c2

s
=

dp(ε)

dε
≤

1

3
In a compressible fluid,
velocity of excitations

Real sound waves
disperse as they

propagate
(another hint about

what viscosity does)

The First Book of Sound: A Basic Guide to the Science of Acoustics by David C. Knight, Franklin Watts, Inc. New York (1960). p. 80



Examples

Ideal

“QGP”

Hadronic

Kolb, PhD Thesis



Scale Invariance

c
2

s
=

1

3

This is a special case:
1. No intrinsic scale in hydrodynamics
2. Speed of sound is determined by 
the number of spatial dimensions!

Often called the “ideal gas” EOS.
This seems misleading: it is used for non-interacting (e.g. 

E&M blackbody)  and strongly-interacting systems

Tµ

µ = ε − 3p = 0 → p =
ε

3



Scale Invariance, cont
The entire universe is often modeled as
an ideal fluid with same equations as us!
(of course GR determines geometry etc.,

dynamics controlled by baryonic & dark matter/
energy, etc.)

∂
µ
Tµν = 0

Astrophysical jets

Stellar
core collapse
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Three Stages

Initial
Conditions

Space-time profile of
energy or entropy

with a space-time-dependent
velocity distribution



Initial Conditions
Landau

Total stopping, immediate
thermalization &

longitudinal 3D re-expansion

Bjorken

Partial stopping,
“boost-invariant”

2D dynamics

τ0 ∼ 1fm/cτ0 ∼
1
√

s
fm/c

TodayTomorrow



Bjorken Initial Conditions
BjorkenChoose one “slice”

in rapidity space

Choose a consistent
set of parameters:

1. initial proper time (τ0)
2. energy OR entropy density

constant in rapidity

Assume that system
expands in a boost invariant

way for entire evolution

∂µTµν = 0 →

dε

dτ
= −

ε + p

τε0(τ0, y) = ε(τ0)

ε(τ)

ε(τ0)
=

(

τ0

τ

)4/3

v = z/t

thermalization time is
an evolution scale!



Bjorken flow in ϕ4 Field Theory

!2
k ! k̂k2 " !2; k̂k2 ! 2

dx2
#1$ cosdxkn%: (15)

These forms also require that the renormalization of T"#
be achieved using appropriate lattice choices. In particu-
lar, we adopt jknj !

!!!!!

k̂k2
p

in (14).
We are now ready to address the hydrodynamics of our

field theory. In 1" 1 dimensions, one can diagonalize the
expectation value of the energy momentum tensor and
cast in the form of an ideal fluid [11]

hT"#i ! #"" p%u"u# $ g"#p; @"hT"#i ! 0; (16)

where u" ! $#1; v%, #$ ! 1=
!!!!!!!!!!!!!!

1$ v2
p

% is the collective
fluid velocity, and " and p are the comoving energy and
pressure densities. The latter are the eigenvalues of the
energy momentum tensor and can be obtained from the
invariance of its trace and determinant "$ p ! T"

" ,
"p ! DetjTj. The fluid velocity can be obtained from (16)

T01 ! #"" p% v
1$ v2 : (17)

The attraction of scaling lies in the fact that the relation
x ! &vt allows for great simplifications of the hydro-
dynamic equations (16), which can then be expressed in
terms of a single variable and thus become ordinary
differential equations. These can then be solved analyti-
cally [3], generating predictions for the spatiotemporal

behavior of hydrodynamic quantities such as energy den-
sity ", temperature, or entropy. The important feature of
these solutions, in 1D flow, is that boost invariance re-
quires that they are functions of proper time % only and
are independent of rapidity. This feature is preserved by
the hydrodynamic evolution. To be explicit, we consider a
simple equation of state dp=d" ! c20, with c0 the (con-
stant) speed of sound. This describes, in particular, the
ultrarelativistic free gas with c0 ! 1. Then [3]

"#x; t%="0 ! #%=x0%$#1"c20%; % !
!!!!!!!!!!!!!!!

t2 $ x2
p

; (18)
where "0; x0 are integration constants. The equation of
state p ! c20" can be obtained using simple assumptions
about the (hadronic) excitation spectrum [12,13]. The
dependence of thermodynamic scalars on % alone implies
that their isosurfaces are hyperboloids t2 $ x2 ! const in
space-time, a property that we can easily check in our
results, see Figs. 1 and 3 corresponding to initial
conditions (i) and (ii), respectively. Figure 2 shows the
pressure in space-time for the same situation as in Fig. 1.

Scaling solutions do not preserve global energy con-
servation. Thus, energy isosurfaces must eventually de-
viate from the scaling hyperbola and join neighboring
isosurfaces, creating characteristic hornlike shapes.
This behavior, which can be extracted directly from
hydrodynamic equations, is also observed in the quantum
field solutions (Figs. 1 and 3).

Equation (18) also allows us a measurement of c0.
Figure 4 shows the decay in time of the energy density
of the Gaussian mean field discussed in Fig. 3. The
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FIG. 1 (color). Contours of equal energy density in space-
time, near the collision point of two kinks (at the origin of the
plot), initially boosted towards each other at v ! 0:8. Contours
are for &=m2 ! 0:1; 0:08; 0:06; 0:04; 0:03; 0:02. The collision is
symmetric under spatial reflection. We show the region after
and to the right of the collision point. Red denotes the highest
energy density, navy blue the lowest. The energy isosurfaces
show signs of hydrodynamic scaling, following approximate
hyperboloids, which are distorted because of the presence of
the emerging kinks.
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FIG. 2 (color). Pressure isosurfaces in space-time for the
situation shown in Fig. 1. Asymptotically far from the kink
trajectories, the equation of state mimics that of a gas with p !
c20". Close to the kinks the pressure gradients indicate space-
time regions where strong energy flows are imminent, such
as the area around the kink collision point, at the origin of
the plot.

VOLUME 89, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 9 SEPTEMBER 2002

112301-3 112301-3resulting fit suggests a value of 1 ! c0 * 0:77, compatible
with an ultrarelativistic equation of state c0 " 1 in 1D.

In conclusion, we have demonstrated for the first time
that hydrodynamic scaling emerges from the dynamics of

quantum field theory at sufficiently high-energy densities.
We analyzed situations both with leading particles, the
asymptotic states both before and after the collision, and
the evolution of a simple local energy overdensity. The
extension of this type of calculation to 3D, where hydro-
dynamics is richer, and to include scattering, necessary
for the description of real fluids, remain necessary steps
to make real time studies of quantum fields predictive
experimentally in the context of heavy-ion collisions.

We thank K. Rajagopal for comments on the manu-
script. This work was supported by the D.O.E. under
agreement No. DF-FC02-94ER40818.
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FIG. 4 (color). "#x " 0$=m2, in the wake of the decay of a
Gaussian hot region of Fig. 3. The solid lines show power laws
of the form (18) with 1% c20 " 2 (blue), corresponding to the
ultrarelativistic ideal gas (c0 " 1) and with 1% c20 " 1:6 (red).
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FIG. 3 (color). " isosurfaces in space-time, for the decay of
an initial Gaussian shape (10), with A " 1 and ’0 " 5.
Contours are for !=m2 " 1; 0:9; 0:7; 0:5; 0:3; 0:1. Here we chose
the energy contained in the initial hot region to be about
2 orders of magnitude larger than that deposited by the kink
collision of Figs. 1 and 2. The red region carries away most of
the energy in the form of a wave packet traveling close to the
speed of light. The energy isosurfaces follow exquisite hyper-
boloids, characteristic of relativistic hydrodynamic scaling.
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Relativistic hydrodynamic scaling or boost invariance is a particularly important hydrodynamic
regime, describing collective flows of relativistic many body systems and is used in the interpretation of
experiments from high-energy cosmic rays to relativistic heavy-ion collisions. We show evidence for the
emergence of hydrodynamic scaling from the dynamics of relativistic quantum field theory. We
consider a scalar !"4 model in 1! 1 dimensions in the Hartree approximation and study the relativistic
collisions of two kinks and the decay of a localized high-energy density region. We find that
thermodynamic scalar isosurfaces show approximate boost invariance at high-energy densities.

DOI: 10.1103/PhysRevLett.89.112301 PACS numbers: 25.75.Ld, 05.70.Ln, 11.80.–m

Hydrodynamics has been used since the work of
Landau [1], to describe the properties of high multiplicity
final states in high-energy particle collisions. While
Landau’s motivations dealt with high-energy cosmic
rays, there has since been ample evidence from accelerator
experiments that hydrodynamic scaling (the longitudinal
velocity vx " x=t), which implies flat rapidity distribu-
tions, is the correct approximate kinematical constraint
for the dynamics of high-energy particle collisions.

These findings imply that hydrodynamic scaling must
emerge from the dynamics of quantum field theory, if the
latter is to be the correct description of the collective
behavior in particle physics models. While the applicabil-
ity of quantum field theory in these regimes is not in
doubt, it has not been demonstrated that hydrodynamic
scaling, which implies that the energy density isosurfaces
are surfaces of constant #2 " #t2 $ x2%, is achieved at
sufficiently high center of mass collision energies.

The importance of hydrodynamic scaling is that it
leads to a simple understanding of why the single particle
distribution functions of outgoing particles have a plateau
when plotted against the particle rapidity variable y "
1
2 ln&#E! pk%=#E$ pk%', where E and pk refer to the
energy and momentum in the direction of the collision
of an outgoing particle [2]. From a center of mass per-
spective, one can understand this in terms of having the
energy for particle production deposited in a highly
Lorentz contracted region so there is no longitudinal scale
in the subsequent flow [1,3]. From a frame independent
perspective, developed by Bjorken [4], one understands
this through the approximate boost invariance (for mod-
est boosts) of two highly Lorentz contracted colliding
nuclei at high energies. Field theory calculations using
this kinematic constraint also lead to flat rapidity distri-
butions for outgoing particles [5]. As a result, this sim-
plifying constraint is often used in both hydrodynamic
and field theory calculations of particle production. The
purpose of this Letter is to justify this approximation
(scaling) in a first principles field theory calculation.

Present and future experimental prospects for the
study of hydrodynamic scaling in high-energy experi-
ments are tremendous. The relativistic heavy ion collider
(RHIC) is presently producing the highest energy, highest
multiplicity hadronic final states ever achieved in a con-
trolled environment [6]. The large hadron collider (LHC)
will later produce even more spectacular events. The de-
tailed understanding of hydrodynamic flows in these
experiments constitutes the most promising path for the
determination of the thermodynamic properties of nu-
clear matter at high temperatures [7], viz. its equation
of state and the nature of the confinement and chiral
symmetry breaking transition.

Direct field theoretical methods, although still in their
adolescence [8], offer much promise for the understand-
ing of hydrodynamic scaling and the limits of its applic-
ability. Moreover, they also make accessible more general
situations where fields may be strongly out of thermal
equilibrium (e.g., at a ‘‘quench’’) or where quantum
coherence matters, which escape Boltzmann particle
methods.

In this Letter we show, for the first time, how hydro-
dynamic scaling emerges from the dynamics of a simple
1! 1-dimensional scalar field theory in the Hartree ap-
proximation. Our results allow us to map the energy
density and pressure as a function of space and time. To
exhibit the ubiquity of hydrodynamic scaling, we study
two different situations: one in which a hot region is
formed in the wake of the collision of two leading par-
ticles (kinks) at relativistic velocities, and another simpler
one where we construct a local energy overdensity which
is allowed to relax under its own self-consistent evolution.
To be definite, we will be concerned with a scalar !"4

quantum field theory with Lagrangian density

L " 1
2@$"@$"! 1

2$
2
!"

2 $ 1
4!"

4: (1)

The well-known Hartree approximation is the simplest
nontrivial truncation of the coupled equations for the
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Collision of
two packets

(“leading particles”

Decay of a
stationary “lump”



Density vs. Time
• The time of full thermalization (τ0) 

controls the initial energy density
• Lowering the thermalization time increases the initial 

density

• Increasing density increases the initial temperature 

• Heinz/Kolb found in their fits (with 
Bjorken expansion) to data that

• Important points:
• There is no single “temperature”, but a “temperature 

history” (i.e. hydro gives a space-time history)

• The thermalization time is a Very Important Choice

τ0T0 ∼ 1

ε ∝ nDOF T
4



Energy & Entropy 
TS = E + pV → s =

ε + p

T

sµ ≡ suµ

entropy density

entropy current

Total entropy is conserved,
in ideal hydrodynamics

∂
µ
Tµν = 0 → ∂

µ
sµ = 0

s

So choose entropy density and τ0

to reproduce multiplicity data

Bjorken hydro does not
generate rapidity distributions

(cf. Landau).  It preserves them
(and is asymptotic to most solutions) 

N ∝ S =

∫
V

dV s



Spatial Distributions
We “know” that

nuclei are “made” of nucleons
(QM many body problem
makes this a non-trivial

thing to say...)

“Glauber” calculations treat
them as smooth densities

in order to calculated
participant and collision
densities npart and ncoll 

d3s

dηd2"x
= npp

{

(1 − x)
npart("x)

2
+ xncoll("x)

}

Participant
density

Collision
density



Spatial Distributions

TransverseLongitudinal
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Initial density
profile is a 

convolution
of longitudinal 
&  transverse

P. Kolb, PhD Thesis



Energy/Entropy Density
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Hydrodynamic calculations use two-component
picture, tune on central events, and test

tuning on experimental data (e.g. PHOBOS)

PHOBOS (2002)



Three Stages

Initial
Conditions

Hydrodynamic
Evolution

Hadronic
Freezeout

ds

dη
("x) ∂

µ
Tµν = 0 ?

hydro “codes” (e.g. SHASTA)Glauber + data



It’s Cold Out There

Whatever carries
the momentum, we have

to presume it carries
quark quantum #’s
found in final state

Eventually the system
cools via hydro expansion

When the typical
interparticle distance exceed

a relevant Compton wavelength
(~1/mπ ~ 1fm for a pion)
interactions “freeze-out”

T ∼ 1/mπ



Cooper-Frye Formula

E
d3N

d!p
=

∫
σ

f(x, p)pµdσµ

f(x, p) =
g

(2π)3
1

exp(pµuµ/kT ) − 1

E(x) = pµuµ = γ("β)E − γ("β)"β · "p

Define a “hypersurface” in space-time (3D)
where the temperature (energy/entropy) falls

below a “critical” value

Let the system at that surface be a “fireball” which 
decays isotropically in its own rest frame

# of fireballs
normal to surface

Fireball sits in
flow field

Fireball Bose distribution
at freezeout temperature
(controlled by QCD mass

spectrum...)

T ∼ 1/mπ



Cooper-Frye Formula

4

TABLE I: Parameter set for the Au+Au collisions.

Maximum initial energy density E0 6.0 GeV/fm3

Maximum initial net baryon density nB0 0.125 fm−3

Longitudinal gaussian width ση of initial
energy density

1.47

Longitudinal extension η0 of the flat region
in the initial energy density

1.0

Longitudinal gaussian width σD of the ini-
tial net baryon density

1.4

Space-time rapidity ηD at maximum of the
initial net baryon distribution

3.0

Gaussian smearing parameter σr of the
transverse profile

1.0 fm

Freeze-out temperature Tf 125 MeV

TABLE II: Output.

Net baryon number 131

Mean chemical potential at freeze-out 〈µB〉 76.1 MeV

Mean transverse flow velocity 〈vT〉 of the
fluid at |η| < 0.1

0.509c

Lifetime of the QGP phase τQGP 2.92 fm/c

Lifetime of the mixed phase τMIX 12.61 fm/c

Total lifetime of the fluid τHAD 18.94 fm/c

99 % of total collision energy. We display the outputs from the fluid in Table. II. In the present model, net baryon
number is much smaller than total baryon number of incident nuclei. 〈µB〉 means average of the chemical potential
on the whole freeze-out hypersurface. 〈vT〉 is the average transverse velocity of the fluid element in |η| ≤ 0.1 at the
freeze-out. “Lifetimes” of the each phase are also shown in Table. II. Space-time evolution of the fluid is displayed in
Fig. 6. The large area between T = 160 MeV and T = 158 MeV means large space-time volume of the mixed phase.
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FIG. 6: Temperature contour plot on r-τ plane. Left and right figures stand for η = 0 and η = 3, respectively.

The two-particle correlation function for chaotic source is calculated through

C2(q
µ, Kµ) = 1 +

|I(qµ, Kµ)|2

I(0, kµ
1 )I(0, kµ

2 )
(1)

Contours are
result of numerical

calculations

Unique consequence of
initial conditions

+
equation of state

Choose freezeout

Hirano et al (2001)



Baryon
(3 q or q)

Meson
(1 q & q)

Variety of quarks, angular momentum, parity, 
etc. gives exponential rise in number of states!

3

FIG. 2: Accumulated spectrum of non-strange baryons plot-
ted as a function of m. The lower curve at high m corresponds
to older data of Ref. [7], while the higher curve includes the
new states as described in the text.

Now we pass to the case of the non-strange baryons.
With the help of identification of states in chiral multi-
plets [11], we add the missing states (marked with the
question signs in [11]) on top of the states from PDG [7]
used in Ref. [15]. In this way we fill the chiral multiplets.
The results of this procedure are shown in Fig. 2. We
note that the effect of including these baryon states is
less important than in the analogous procedure for the
mesons. In the present case we do not show the fit to
the exponential formula, since it is difficult to line-up
the results along one straight line in a sufficiently broad
range of m. Actually, with the present data one may see
a straight line up to about m = 2 GeV, and possibly an-
other straight line, with a lower slope, above. However,
this may be an artifact of missing data in the high-mass
range.

Indeed, the parity doublets in N and ∆ can be as-
sociated with the (0, 1/2) ⊕ (1/2, 0) representations for
the nucleon spectrum, the (0, 3/2) ⊕ (3/2, 0) multiplets
in the ∆ spectrum, and with the (1, 1/2) ⊕ (1/2, 1) rep-
resentations which combine the doublets in the nucleon
and delta spectra. If all these multiplets are realized
in nature, then the number of the states in the region
above 2 GeV should be much larger than given in PDG.
Unfortunately, this region has never been systematically
explored in experiments.

We now come back to the meson case of Fig. 1, and
wish to present the data in a somewhat different manner.
The problem of the presentation in the log scale, as in
Fig. 1, is that the low-mass states are sparse, while the
high-mass states are jammed up. For that reason we now
look at the ratio of the experimental function (2) to the
model function (3), with the choice f(m) = 1 and the
parameters at the fitted values quoted in the text. The
ratio is plotted as a function of the accumulated num-
ber of model states, Nmodel. If the Hagedorn hypothesis
complies to the data, this ratio should be equal to unity.

FIG. 3: The ratio of the accumulated spectrum of non-strange
baryons to the exponential fit, plotted as a function of m. The
lower curve at high m corresponds to older data of Ref. [7],
while the higher curve includes the new states as described in
the text. We note a sizeable increase of the validity range of
the Hagedorn hypothesis.

FIG. 4: Comparison of mesons (dashed lines) and baryons
(solid lines) of Figs. 1 and 2.

Indeed, this is so with the new data up to about 900
states, while with the old data it was true only up to
about 250 states. Again, we see vividly that the inclu-
sion of the new states significantly increases the range of
validity, or verification, of Eq. (1).

Finally, for the reader’s convenience we overlay our re-
sults for the mesons and baryons in one plot of Fig. 4.
As pointed out in Ref. [15], up to m = 2 GeV we note
a faster growth rate for baryons than for mesons, which
means two distinct Hagedorn temperatures for mesons
and baryons. This is a prediction of dual string mod-
els, see Ref. [17] for a discussion. For higher masses this
feature is no longer obvious, with more experimental in-
formation needed to clarify the issue.

In conclusion, we list our main observations:
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Update of the Hagedorn mass spectrum

Wojciech Broniowski,1, ∗ Wojciech Florkowski,1, 2, † and Leonid Ya. Glozman3, ‡
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(Dated: June 21, 2004)

We present an update of the Hagedorn hypothesis of the exponential growth of the number of
hadronic resonances with mass. We use the newest available experimental data for the non-strange
mesons and baryons, as well as fill in some missing states according to the observation that the
high-lying states form chiral multiplets. The results show, especially for the case of the mesons,
that the Hagedorn growth continues with the increasing mass, with the new states lining up along
the exponential growth.

PACS numbers: 25.14.20.-c, 14.40.-n, 12.40Yx, 12.40Nn
Keywords: particle spectra, Hagedorn hypothesis, chiral symmetry

The Hagedorn hypothesis [1, 2, 3] of the exponential
growth of the number of hadronic resonances with mass
is one of the most fundamental issues in particle physics.
The formula for the asymptotic dependence of the density
of hadronic states on mass, namely

ρ(m) = f(m) exp(m/TH), (1)

where f(m) denotes a slowly varying function and TH is
the Hagedorn temperature, has gained a lot of attention
due to its appealing simplicity, fundamental character,
support from the experimental data and theoretical ap-
proaches, as well as because of its relevance to the phe-
nomenology of particle production, in particular concern-
ing the possible phase transition from the hadron gas to
the quark-gluon plasma [4, 5, 6].

The purpose of this note is to present an update of the
experimental verification of Eq. (1). We supplement the
data published in the Particle Data Tables [7] with the
new experimental information [8, 9], as well as add the-
oretically predicted new states belonging to chiral mul-
tiplets [10, 11, 12, 13, 14]. Although the appearance of
some of these states has not been verified experimentally
yet, their existence follows from the recent theoretical
findings that the high-lying particle spectrum essentially
has the features of restored chiral symmetry [10].

The results are shown for the non-strange mesons and
baryons, where the new data is available. The paper has
no pretence of presenting new models or ideas; neverthe-
less, due to the fundamental nature of the problem re-
lated to basic ideas behind the formation of bound states
and resonances in particle physics, the results of our sim-
ple compilation should be of interest for the community.
We include the new experimental results and show that
the new data are important in the verification of the

∗Electronic address: Wojciech.Broniowski@ifj.edu.pl
†Electronic address: florkows@amun.ifj.edu.pl
‡Electronic address: glozman@kfunigraz.ac.at

Eq. (1). The new results extend significantly, at least
for the mesons, the range of fiducial range of the Hage-
dorn hypothesis. While with the data listed in the 1998
edition of the Particle Data Tables [7] used in [15, 16, 17]
the exponential growth for non-strange mesons could be
observed up to the masses of about 1.8 GeV, now it con-
tinues higher up, till about 2.3 GeV.

We start with a very brief reminder of the history of
the Hagedorn hypothesis (for much more complete his-
torical presentations we refer the reader to Hagedorn’s
original lecture [3] and to a tribute article by Ericson and
Rafelski [18]). Equation (1) was originally proposed to
explain the spectra in the p-p and π-p scattering [1, 19].
Later, it was obtained from the statistical bootstrap mod-
els [2, 20, 21, 22]. Subsequently, it gained a convincing
support from the dual string models [23, 24, 25, 26]. It
is worthwhile to recall that in the 1960s, when the origi-
nal Hagedorn idea was formed, very few hadronic states
were known, up to the mass of the ∆ isobar. More and
more states have been accumulated over the years, thus
much more systematic studies were possible, such as for
instance the analysis of Ref. [27] and of Ref. [15], where
two of us (WB,WF) pointed out the different growth rate
of mesons and baryons, as well as demonstrated the uni-
versality of the Hagedorn temperatures with strangeness.
The faster growth of the baryon spectrum was also noted
in Ref. [28].

The Hagedorn concept of the limiting temperature
appears in many different contexts, e.g., in the stud-
ies of non-linear Regge trajectories [29, 30, 31], strings
[32, 33, 34], d-branes [35], and cosmology [36]. More-
over, a complete treatment of hadronic resonances, as
suggested by Hagedorn already in the 1960s, is the basic
ingredient of the successful models of hadron production
in heavy-ion collisions at the RHIC energies [37, 38].

After many dormant years with essentially no incoming
new data, a recent systematic partial wave analysis of the
p̄p annihilation at LEAR has revealed a lot of new meson
states in the mass range 1.8 - 2.4 GeV [8, 9]. These
new experimental results turned out to be in line with

ρ(m) ∼ e
m/T0

πK

n

Λ
Δ

Σ
Ω

ρ

ω

Ξ

ρ

p

ϕ

ρ(m) ∼ maem/T0 → Z =

∫
ρ(m)e−m/T → ∞(T ≥ T0)

TH ∼ 170MeV

Freezeout “happens” when all hadron states available

Broniowski et al (2004)



Content of Cooper-Frye
•First law of hydro:
• Before freezeout, there are no particles

•Cooper-Frye is a way to “fix” this
• A “hack” to translate space-time-velocity 

distribution into particles via a local “thermal model”

• All mass dependencies happen at hypersurface

•This is true of all hydro calculations 
we use
• Csernai et al are trying more complicated freeze-

out schemes, which I won’t discuss



Chemical vs. Thermal
Some assume interacting 
hadron gas after freezeout
(e.g. Heinz/Kolb, Shuryak 

et al, Hirano, etc.)

Relative amount of
each species fixed at Tch,
but system cools to T<Tch

T = Tth

T = Tch

Hadronic chemistry is
set by Hagedorn temperature



The Movie, Backwards

Initial
Conditions

Hydrodynamic
Evolution

Hadronic
Freezeout

Time

Experimental Discovery
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Radial Flow
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Kolb, PhD Thesis
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Radial Flow

ior by introducing appropriate radial velocity profiles at
the time of complete thermalization. Such effects can
be associated with pre-thermal re-interactions, a free-
streaming period, or a combination thereof, and turn out
to generally improve the description of transverse mo-
mentum spectra of the produced particles.

Our article is organized as follows. In Sects. II and III
we analyze the impact (and interplay) of off-equilibrium
hadro-chemistry and modified initial collisions on trans-
verse momentum spectra of pions, kaons and (anti-) pro-
tons, both for central and more peripheral collisions in
comparison to preliminary data at 200 AGeV. Perti-
nent predictions for azimuthal anisotropies in non-central
collisions are presented in Sect. IV. We furthermore
comment on implications for the freezeout geometry in
Sect. V, and summarize in Sect. VI.

II. PARTICLE SPECTRA – CENTRAL

COLLISIONS

Let us start by briefly discussing the initial condi-
tions of our hydrodynamic calculations. According to
the ∼ 15% larger hadron multiplicity at midrapidity in
central collisions at 200 AGeV [19,20] as compared to
130 AGeV, we increase the maximum entropy-density
parameter from s0 = 95 fm−3 [7] to 110 fm−3 (keeping
the equilibration time fixed at τ0 = 0.6 fm/c to facili-
tate the interpretation of observed changes). The correct
baryon admixture is obtained by adjusting the entropy-
per-baryon to S/B = s0/n0 = 250, constant through-
out the evolution (s0 and n0 are the initial entropy- and
baryon-density in the center of the collision, S and B the
total entropy and net baryon number). The thermody-
namic fields in the transverse plane are set to scale with
a combination of wounded nucleon and binary collision
profiles as elaborated in Refs. [7,18], which allows for a
geometrical prescription to reproduce the multiplicity in
collisions at finite impact parameter b.

The results of our calculations with improved hadro-
chemistry are compared to (preliminary) data for π−,
K− and antiproton pT-spectra from central Au+Au col-
lisions at 200 AGeV [21,22] in Fig. 1 (the experimental
centrality selection of 5 % is approximated by using an
average impact parameter b = 2.4 fm). Compared to
particle spectra in standard (i.e., chemical-equilibrium)
hydrodynamics we find a better description of the over-
all curved shape of the hadronic spectra, in particular for
low-pT pions. This is a result of the meson chemical po-
tentials (µπ ≈ 80-100 MeV at freezeout), which amplify
the Bose-statistics effect. In addition, the population of
heavy resonances also increases after inclusion of chem-
ical potentials which entails larger contributions at low
pT from their decay products. At large transverse mo-
menta the hydrodynamic calculations deviate from the
data which is suggestive for the onset of the hard scat-
tering regime. At exactly which values of pT this occurs,

and how this transition depends on the particle species,
are among the major questions to be clarified. E.g., high
energy partons evolving within a hydrodynamic back-
ground can be introduced to study the particle spectra
beyond the collective behavior [23].

As was already observed in Ref. [16], the expansion
of the chemically non-equilibrated hadron gas leads to
slopes for pion spectra that are almost insensitive to
the decoupling temperature. Proton spectra, on the
contrary, clearly favor a freezeout at T # 100 MeV
(thick solid line), which corresponds to an energy density
e # 0.075 GeV/fm3 (which is about the same as in previ-
ous calculations). The thin lines in Fig. 1 correspond to
decoupling at the phase transition (recall that the mul-
tiplicity of the individual particle species is independent
of freezeout due to the chemical potentials).

The experimental pion spectra in the 1-2 GeV range
appear flatter than what follows from the flow generated
by hydrodynamic expansion with our given initial con-
figuration (at transverse momenta pT ≥ 2 GeV this is
conceivably due to additional perturbative hard scatter-
ing contributions). To a lesser extent, this is also true for
the heavier kaons and protons, even at the low freezeout
temperature of 100 MeV.
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FIG. 1. π−, K− and antiproton spectra for central colli-
sions at 200 AGeV (K− and p̄ spectra are scaled by factors
of 1/10 and 1/100, respectively). The thick lines represent
the results for Tdec = 100 MeV, the thin lines for 165 MeV.
All calculations are for a thermalization time τ0 = 0.6 fm/c,
either without (solid lines) or with (dashed lines) an initial
transverse boost (see text).

The data thus seem to exhibit somewhat stronger col-
lective expansion than developed subsequent to an equi-
libration time of τ0 = 0.6 fm/c. Additional radial flow
could be generated by assuming still shorter equilibra-
tion times, e.g., τ0 = 0.2 fm/c [24]. It is, however, hard to
imagine that particles are ‘born’ into thermal equilibrium
without allowing for some relaxation time with rescat-
tering. But even the other extreme, i.e., a period of free
streaming, induces a non-vanishing radial velocity profile
due to a separation of originally random particle veloc-

2

Build up of radial flow needed to
describe bulk of data down to very low pT

Kolb & Rapp (2003)



Estimating Reaction Plane
ex =

∑

i

cos(2φi)

ey =
∑

i

sin(2φi)

ΨEP = tan
−1

{

ey

ex

}

Resolution can be estimated
by comparing subevents separated in 

(and away from measured track
to avoid autocorrelation!)η

v2 =
〈cos(2[φi − ΨR])〉

√

〈cos(2[ΨP − ΨN ])〉
resolution

estimator



v2 @ RHIC
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1

N

dN

dφ
= 1 + 2v1 cos(φ − ΦR) + 2v2 cos(2[φ − ΦR]) + ...

Nicholas already taught us how to find event plane...



Elliptic Flow in Hydro
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εx =
〈Y 2〉 − 〈X2〉
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Elliptic flow also builds 
up on t~O(R/cs)

spatial “eccentricity”

momentum “eccentricity”

v2 ∝ εx

Kolb, PhD Thesis



Hydro @ RHIC
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“Fine Structure”
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Space-Time Image
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Hydro vs. HBT
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The Movie, Backwards

Initial
Conditions

Hydrodynamic
Evolution

Hadronic
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Time
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Hotter (>1012 oK)
Denser (>30 GeV/fm3)

Smaller (~6 fm)
Forms faster (τ0<1 fm/c)

than other known liquids

and perfect?

What have we seen?
thermalized, collective matter that is...



Perfect
Liquid?

Do we know
that it has

zero viscosity?

Does it have
attractive interactions 

characteristic of liquids?



Eccentricity
Overlap zone where matter
thermalizes has a particular

“shape” vs. impact parameter

v2 ∝ ε

Generically, hydro predicts complete transfer of
spatial anisotropy into momentum anisotropy!

ε

εstd =
σ

2
y − σ

2
x

σ
2
y + σ
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x

x
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Does v2 follow ε?

PHOBOS QM2006 R. Nouicer

Au+Au 
Cu+Cu



Something wrong...

PHOBOS QM2006 R. Nouicer

Au+Au 
Cu+Cu



Eccentricity Fluctuations

Smooth nuclei

Discrete Nucleons
(“Glauber Monte Carlo”

approach)

We know nuclei are made of nucleons,
Why “insist” that an average density

matters for flow measurements?  

participants



Au+Au



Au+Au

Participants trace out overlap zone, but include
1. Fluctuations (finite number per event)
2. Correlations (it takes two to tango...)



Cu+Cu



Cu+Cu

Fluctuations can seriously deviate from nominal overlap
zone for small numbers of nucleons



Cu+Cu
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“Standard eccentricity”



Cu+Cu
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Principal axes make sense if v2 depends on shape
of produced matter, not the reaction plane

“Participant eccentricity”



Standard Eccentricity

Cu+Cu Au+Au



Participant Eccentricity

Cu+Cu Au+Au



Participant vs. Standard

nucl-ex/0610037



Something wrong...

PHOBOS QM2006 R. Nouicer

Au+Au 
Cu+Cu



...leads to scaling

PHOBOS QM2006 R. Nouicer

Au+Au 
Cu+Cu



“Freeze-in”

Configuration established early and preserved:
substantial viscosity would generate new

entropy under different geometric conditions



Near-Perfect
Fluid?

How does this all relate to QCD?



What is the fluid made of?

Rapidly thermalized matter

But of what? and how so fast?

Quarks & gluons?
Is it a real “quark-gluon plasma”

(QGP)?

τ0 ! 1fm/c



Parton distributions, 
Nuclear Geometry,
Nuclear shadowing

Parton production &
reinteraction
(or, sQGP!)

Chemical freezeout
(Quark recombination)

Jet fragmentation functions

Hadron rescattering

Thermal freezeout &
Hadron decays

Degrees of Freedom



Viscosity
•A genuine microscopic length scale 

relevant to the evolution violates 
assumption of continuum hypothesis
• This is a good rule of thumb for why “viscosity” is 

important

•Viscosity is a new, hot issue in heavy 
ion physics
• Measures the “non-equilibrium” physics

• Jet quenching, parton scattering, etc.

• Breaks scale invariance!



Viscous Phenomena

Viscosity introduces new dimensions to
hydrodynamic phenomena 

v

http://www.galleryoffluidmechanics.com/vortex/dvm.htm

http://www.galleryoffluidmechanics.com/vortex/dvm.htm
http://www.galleryoffluidmechanics.com/vortex/dvm.htm


Dynamical Regimes of QCD

Long timesShort times

Small
opacity

Large
opacity

pQCD Cascade? Hadron Cascade?

Near-Perfect Fluid? Lattice QCD?QCD



Three Dimensions?
Landau

Total stopping, immediate
thermalization &

longitudinal 3D re-expansion

Bjorken

Partial stopping,
“boost-invariant”

2D dynamics

Same hydro, different initial conditions!

τ0 ∼ 1fm/cτ0 ∼
1
√

s
fm/c



Three Dimensions
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Elliptic flow shows strong pseudorapidity dependence,
suggestive of real longitudinal hydrodynamic evolution

Phys.Rev.C74:021901,2006 

Phys.Rev.Lett.94:122303,2005



Three Dimensions
Landau

Total stopping, immediate
thermalization &

longitudinal 3D re-expansion

τ0 ∼
1
√

s
fm/c

No time for this today!




