

Three Dimensions of Hydrodynamics in Heavy Ion Collisions

Peter Steinberg

Brookhaven National Laboratory National Nuclear Physics Summer School, July 2007

Goal

- Hydrodynamics has become the "language" of RHIC physics
- Essential to be familiar with the concepts and phenomena at LHC
- "Three" dimensions of hydro
 - Initial Conditions Thermalization & Geometry
 - Hydrodynamic evolution / Equation of state
 - Freezeout to Hadrons
- The importance of viscosity
 - Is there an intrinsic scale to the dynamics?

Hope Springs Eternal

- This is supposed to be an "easy" talk mathematically
 - I don't "do" math (but I like to talk about it!)
- It will also be as <u>conceptually</u> clear as possible
 - Assume nothing is obvious (it's not!)
 - Ask, and ye shall receive (a "thoughtful" answer from me or someone in the audience!)
- I want to leave you with a concrete space-time image of the dynamics

Phenomena @ RHIC

RHIC: The Movie

Three Stages

Initial Conditions Dynamical Evolution

Hadronic Freezeout

Three Stages

Hydrodynamic Evolution

Hadronic Freezeout

Thermalization

In our field, we have to make the imaginative leap from two contracted nuclei (clusters of nucleons) composed of nucleons (clusters of "partons") transforming into a "fireball" (cluster of ??)

Thermalization

In our field, we have to make the imaginative leap from two contracted nuclei (clusters of nucleons) composed of nucleons (clusters of "partons") transforming into a "fireball" (cluster of ??)

Fluids

All we need to assume is:

- 1. Infinitessimally small cells are locally thermalized
- 2. The cells are interacting rapidly with each other

Then we can define a temperature, energy density, and pressure

Thermalization

The usual picture:

particles start with an arbitrary velocity distribution, but over time "equilibrate" or "thermalize", maximizing entropy by choosing the most probable velocity (Boltzmann) distribution

Continuum Limit

Boltzmann equation: particle collisions

Fluid: no particles

Stress Energy Tensor

In continuum limit, we define bulk variables

$$T_{\mu\nu} \equiv (\epsilon + p)u_{\mu}u_{\nu} - g_{\mu\nu}p$$

$$\epsilon(x_{\mu})$$
 Energy density

$$p(x_{\mu})$$
 Pressure

$$u_{\mu}(x_{\mu})$$
 Relativistic velocity $= \gamma(1, \beta_x, \beta_y, \beta_z)$

$$egin{aligned} \epsilon(x_{\mu}) & ext{Energy density} \ p(x_{\mu}) & ext{Pressure} \end{aligned} egin{aligned} \epsilon(x_{\mu}) & \epsilon(x_{$$

in the local fluid rest frame: pressure is isotropic!

Hydrodynamic Equations

Given all the assumptions above, ideal hydrodynamics (w/ no baryons) is a coupled set of non-linear differential equations which merely express that energy/momentum is conserved locally

$$\partial_{\mu}T_{\mu\nu} \equiv \frac{\partial T_{\mu\nu}}{\partial x_{\mu}} = 0$$

4 equations for 5 functions of x,y,z,t: (ϵ,p,\vec{u}) , since $u_{\mu}u^{\mu}=1$.

$$T_{\mu\nu} \equiv (\epsilon + p)u_{\mu}u_{\nu} - g_{\mu\nu}p$$

$$\partial_{\mu}T_{\mu\nu} \equiv \frac{\partial T_{\mu\nu}}{\partial x_{\mu}} = 0$$

Relativistic Euler equation

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot ((\rho \mathbf{u}) \mathbf{u}) + \nabla p = 0$$

Pressure gradients drive changes in velocity (i.e. F=ma)

2000 μs

Hydrodynamic Phenomena

Vortex Separation

Vortex separation due to viscous flow past a barrier

Equation of State (EOS)

Need one more equation to close the system. Nothing is required by the mathematics, so we can make a <u>choice</u>

The trace of the stress energy tensor is Lorentz invariant: if non-zero it implies a fixed scale in the problem. It also must be positive.

$$T_{\mu\nu} = \left\{ \begin{array}{cccc} \epsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{array} \right\} \qquad T_{\mu}^{\mu} = \epsilon - 3p \ge 0 \rightarrow p \le \epsilon/3$$

Speed of Sound

$$c_s^2 = \frac{dp(\epsilon)}{d\epsilon} \le \frac{1}{3}$$

In a compressible fluid, velocity of excitations

Real sound waves
disperse as they
propagate
(another hint about
what viscosity does)

Examples

Ideal

"QGP"
Hadronic

Kolb, PhD Thesis

Scale Invariance

$$T^{\mu}_{\mu} = \epsilon - 3p = 0 \rightarrow p = \frac{\epsilon}{3}$$
 $c_s^2 = \frac{1}{3}$

This is a special case:

- 1. No intrinsic scale in hydrodynamics
 - 2. Speed of sound is determined by the number of spatial dimensions!

Often called the "ideal gas" EOS.

This seems misleading: it is used for non-interacting (e.g. E&M blackbody) and strongly-interacting systems

Scale Invariance, cont

The entire universe is often modeled as an ideal fluid with same equations as us! (of course GR determines geometry etc., dynamics controlled by baryonic & dark matter/energy, etc.)

$$\partial^{\mu}T_{\mu\nu}=0$$

Astrophysical jets

Three Stages

Initial Conditions

Hydrodynamic Evolution

Hadronic Freezeout

Three Stages

Initial Conditions Space-time profile of energy or entropy with a space-time-dependent velocity distribution

Initial Conditions

Landau

Total stopping, immediate thermalization & longitudinal **3D** re-expansion

$$au_0 \sim \frac{1}{\sqrt{s}} fm/c$$

Tomorrow

Bjorken

Partial stopping, "boost-invariant" **2D** dynamics

$$au_0 \sim 1 fm/c$$

Today

Bjorken Initial Conditions

Choose one "slice" in rapidity space

Choose a consistent set of parameters:

initial <u>proper</u> time (τ₀)
 energy OR entropy density constant in rapidity

$$\epsilon_0(\tau_0, y) = \epsilon(\tau_0)$$

Assume that system expands in a boost invariant way for entire evolution

Bjorken

$$\partial^{\mu} T_{\mu\nu} = 0 \to \frac{d\epsilon}{d\tau} = -\frac{\epsilon + p}{\tau}$$

$$\frac{\epsilon(\tau)}{\epsilon(\tau_0)} = \left(\frac{\tau_0}{\tau}\right)^{4/3}$$

thermalization time is an evolution scale!

Bjorken flow in Φ^4 Field Theory

Collision of two packets ("leading particles"

Decay of a stationary "lump"

Density vs. Time

- The time of full thermalization (τ₀)
 controls the initial energy density
 - Lowering the thermalization time increases the initial density
 - Increasing density increases the initial temperature

$$\epsilon \propto n_{DOF} T^4$$

- ullet Heinz/Kolb found in their fits (with Bjorken expansion) to data that $au_0 T_0 \sim 1$
- Important points:
 - There is no <u>single</u> "temperature", but a "temperature history" (i.e. hydro gives a space-time history)
 - The thermalization time is a Very Important Choice

Energy & Entropy

$$TS=E+pV o s=rac{\epsilon+p}{T}$$
 entropy density $s_{\mu}\equiv su_{\mu}$ entropy current

$$\partial^{\mu}T_{\mu\nu} = 0 \to \partial^{\mu}s_{\mu} = 0$$

Total entropy is <u>conserved</u>, in ideal hydrodynamics

So <u>choose</u> **entropy density** and τ₀ to reproduce multiplicity data

$$N \propto S = \int_{V} dV s$$

Bjorken hydro does not generate rapidity distributions (cf. Landau). It **preserves** them (and is asymptotic to most solutions)

Spatial Distributions

We "know" that
nuclei are "made" of nucleons
(QM many body problem
makes this a non-trivial
thing to say...)

"Glauber" calculations treat them as smooth densities in order to calculated participant and collision densities n_{part} and n_{coll}

Spatial Distributions

Energy/Entropy Density

PHOBOS (2002)

Hydrodynamic calculations use two-component picture, tune on central events, and test tuning on experimental data (e.g. PHOBOS)

Three Stages

Initial Conditions Hydrodynamic Evolution

Hadronic Freezeout

$$\partial^{\mu}T_{\mu\nu}=0$$
hydro "codes" (e.g. SHASTA)

It's Cold Out There

Cooper-Frye Formula

Define a "hypersurface" in space-time (3D) where the temperature (energy/entropy) falls below a "critical" value

Let the system at that surface be a "fireball" which decays isotropically in its own rest frame

$$E\frac{d^3N}{d\vec{\mathbf{p}}} = \int_{\sigma} f(x,p)p^{\mu}d\sigma_{\mu}$$

of fireballs normal to surface

Fireball sits in flow field

$$f(x,p) = \frac{g}{(2\pi)^3} \frac{1}{\exp(p^{\mu}u_{\mu}/kT) - 1}$$

Fireball Bose distribution at freezeout temperature (controlled by QCD mass spectrum...)

$$E(x) = p^{\mu}u_{\mu} = \gamma(\vec{\beta})E - \gamma(\vec{\beta})\vec{\beta} \cdot \vec{p}$$

Cooper-Frye Formula

Contours are result of numerical calculations

Unique consequence of initial conditions

+ equation of state

Choose freezeout

Hirano et al (2001)

Variety of quarks, angular momentum, parity, etc. gives exponential rise in number of states!

Freezeout "happens" when all hadron states available

Content of Cooper-Frye

- First law of hydro:
 - Before freezeout, there are no particles
- Cooper-Frye is a way to "fix" this
 - A "hack" to translate space-time-velocity distribution into particles via a local "thermal model"
 - All mass dependencies happen <u>at</u> hypersurface
- This is true of all hydro calculations we use
 - Csernai et al are trying more complicated freezeout schemes, which I won't discuss

Chemical vs. Thermal

Hadronic chemistry is set by Hagedorn temperature

Some assume interacting hadron gas after freezeout (e.g. Heinz/Kolb, Shuryak et al, Hirano, etc.)

Relative amount of each species fixed at T_{ch}, but system cools to T<T_{ch}

The Movie, Backwards

Initial Conditions Hydrodynamic Evolution

Hadronic Freezeout

Time

Experimental Discovery

Strong "Blackbody"

Strong Blackbody

Т	Chemical freezeout temperature
μ _B	Baryochemical potential (more matter than antimatter)

$$N_i \propto V \int \frac{d^3p}{(2\pi)^3} \frac{1}{e^{(\sqrt{p^2 + m^2} - \mu_B)/T} \pm 1}$$

*k*_B*T*=177 MeV~2x10¹² oK

All hadrons are available with thermal abundances @ freezeout

Radial Flow

146

J. D. BJORKEN (1983)

Radial flow starts from edge, builds up slowly, t~O(R/c_s)

FIG. 4. Geometry of fluid expansion near the edge of the nuclei.

Radial Flow

Kolb & Rapp (2003)

Build up of radial flow needed to describe bulk of data down to very low p_T

Estimating Reaction Plane

$$e_x = \sum_i cos(2\phi_i)$$

$$e_y = \sum_i \sin(2\phi_i)$$

$$\Psi_{EP} = \tan^{-1} \left\{ \frac{e_y}{e_x} \right\}$$

Resolution can be estimated by comparing subevents separated in (and away from measured track to avoid autocorrelation!)η

$$v_2 = \frac{\langle \cos(2[\phi_i - \Psi_R]) \rangle}{\sqrt{\langle \cos(2[\Psi_P - \Psi_N]) \rangle}}$$
 resolution

V2 @ RHIC

$$\frac{1}{N}\frac{dN}{d\phi} = 1 + 2v_1\cos(\phi - \Phi_R) + 2v_2\cos(2[\phi - \Phi_R]) + \dots$$

Nicholas already taught us how to find event plane...

Elliptic Flow in Hydro

spatial "eccentricity"

$$\epsilon_x = \frac{\langle Y^2 \rangle - \langle X^2 \rangle}{\langle Y^2 \rangle + \langle X^2 \rangle}$$

momentum "eccentricity" 5

$$\epsilon_p = \frac{\langle p_y^2 \rangle - \langle p_x^2 \rangle}{\langle p_y^2 \rangle + \langle p_x^2 \rangle}$$

Elliptic flow also builds up on t~O(R/c_s)

Hydro @ RHIC

PHOBOS (2004)

hydro scales $\tau_0 \sim 0.6 fm/c$

 $au_0 \sim 0.6 fm/c$ $\iff au_0 \sim 1 \ fm/c$ hadronic $\epsilon \sim 30 \ GeV/fm^3$ $\iff au_0 \sim 1 \ fm/c$ scales

hadronic

"Fine Structure"

Low energy particles are ~isotropically emitted Higher energy particles "feel" the geometry

Space-Time Image

Low momentum particles are emitted isotropically from full source

High momentum particles are emitted from a compressed volume near system edge

Study this with HBT correlations

Hydro vs. HBT

P. Kolb, PhD Thesis

Qualitative trend seen in data, totally missed by 2+1D hydro...

The Movie, Backwards

Initial Conditions Hydrodynamic Evolution

Hadronic Freezeout

Time

Experimental Discovery

What have we seen?

thermalized, collective matter that is...

Hotter (>10¹² °K)
Denser (>30 GeV/fm³)
Smaller (~6 fm)
Forms faster (T₀<1 fm/c)

than other known liquids

and perfect?

Do we know that it has zero viscosity?

Does it have attractive interactions characteristic of liquids?

Eccentricity

Overlap zone where matter thermalizes has a particular "shape" vs. impact parameter

$$\epsilon_{std} = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

Generically, hydro predicts complete transfer of spatial anisotropy into momentum anisotropy!

Does v₂ follow €?

Something wrong...

Eccentricity Fluctuations

Smooth nuclei

Discrete Nucleons
("Glauber Monte Carlo"
approach)

We know nuclei are made of nucleons, Why "insist" that an <u>average</u> density matters for flow measurements?

Au+Au

Au+Au

Participants trace out overlap zone, but include

- 1. Fluctuations (finite number per event)
- 2. Correlations (it takes two to tango...)

Fluctuations can seriously deviate from nominal overlap zone for small numbers of nucleons

$$\epsilon_{std} = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

"Standard eccentricity"

Principal axes make sense if v₂ depends on shape of produced matter, not the reaction plane

$$\epsilon_{part} = \frac{\sigma_y'^2 - \sigma_x'^2}{\sigma_y'^2 + \sigma_x'^2} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4(\sigma_{xy}^2)^2}}{\sigma_y^2 + \sigma_x^2}$$

"Participant eccentricity"

Standard Eccentricity

Cu+Cu

Au+Au

Participant Eccentricity

Cu+Cu

Au+Au

Participant vs. Standard

Something wrong...

...leads to scaling

"Freeze-in"

Configuration established <u>early</u> and <u>preserved</u>: substantial viscosity would generate new entropy under different geometric conditions

How does this all relate to QCD?

What is the fluid made of?

Rapidly thermalized matter

$$au_0 \ll 1 fm/c$$

But of what? and how so fast?

Quarks & gluons?
Is it a real "quark-gluon plasma"
(QGP)?

Degrees of Freedom

Parton distributions, Nuclear Geometry, Nuclear shadowing

Parton production & reinteraction (or, sQGP!)

Chemical freezeout (Quark recombination)

Jet fragmentation functions

Hadron rescattering

Thermal freezeout & Hadron decays

Viscosity

- A genuine microscopic length scale relevant to the evolution violates assumption of continuum hypothesis
 - This is a good rule of thumb for why "viscosity" is important
- Viscosity is a new, hot issue in heavy ion physics
 - Measures the "non-equilibrium" physics
 - Jet quenching, parton scattering, etc.
 - Breaks scale invariance!

Viscous Phenomena

Viscosity introduces new dimensions to hydrodynamic phenomena

Dynamical Regimes of QCD

Large opacity

Near-Perfect Fluid? Lattice QCD? pQCD Cascade? Hadron Cascade? Short times Long times

Small opacity

Three Dimensions?

Landau

Total stopping, immediate thermalization & longitudinal **3D** re-expansion

$$\tau_0 \sim \frac{1}{\sqrt{s}} fm/c$$

Bjorken

Partial stopping, "boost-invariant" **2D** dynamics

$$au_0 \sim 1 fm/c$$

Same hydro, different initial conditions!

Three Dimensions

Elliptic flow shows strong pseudorapidity dependence, suggestive of real <u>longitudinal</u> hydrodynamic evolution

Three Dimensions

Landau

Total stopping, immediate thermalization & longitudinal **3D** re-expansion

$$au_0 \sim \frac{1}{\sqrt{s}} fm/c$$

No time for this today!

