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Motivations

Mesons

N N

N N
*Holstein. Weak Interactions in Nuclei

In Nucleon-Nucleon (NN) 
interactions, the weak 
interaction couplings are not 
well understood. DDH
model (Desplanques et al, 1980)

Compared to strong interaction, the 
magnitude of weak interaction
is very small.

710~ −

Direct exchange of short ranged weak vector 
bosons (W, Z) suppressed by repulsive 
strong interaction.



Theoretical descriptionn

Historically the PV nuclear interaction has been described by the DDH 
quark model 
=> 6 weak meson exchange coupling constants: fπ , hρ

0 , hρ
1 , hρ

2 , hω
0 , hω

1

n-4He spin rotation in terms of weak couplings 

*New “Hybrid” Effective Field Theory description is valid for ELab< 40MeV
⇒5 dimensionless Danilov parameters (related to the S-P scattering 
amplitudes: 1S0-3P0, 3S1-1P1, 3S1-3P1 transitions)
⇒and a long-range one-pion exchange parameter (proportional to the PV 
pion-nucleon coupling constant h1

π)
*Liu, C.P., 2006, Parity Violating Observables of Two-Nucleon Systems in Effective Field 
Theory, arXiv: nucl-th/0609078 v1 28 Sep 2006

Low Energy, Few Body Interaction measurements are useful 
⇒ Neutron Spin Rotation project
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PV Neutron Spin Rotationn
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Forward scattering amplitude for low-energy neutrons:
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Index of Refraction of a medium:

Neutron’s phase as it passes through the medium:
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For a neutron polarized in the +y direction: ( )
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PV Neutron Spin Rotation
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• PV rotation angle / unit length (dφPV/dx) approaches a finite limit for zero 
neutron energy:

dφPV/dx ~ 10-6 rad/m based on dimensional analysis
3x10-7 rad/m goal in n+4He

• dφPC/dx (due to B field) can be much larger than dφPV/dx, and is vn dependent

detectorASMPSM
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Cross section of Spin Rotation Apparatusn

Side View



Polarizing Super Mirrorn

unpolarized 
beam 

Polarized 
beam B

14 mrad

• spin-dependent scattering from 
magnetized mirrors

• Alternating layers of magnetic surface 
(cobalt) and absorptive layer (titanium 
and gadolinium); 1mm separation;
Placed in 300 G permanent box. 

• Typical polarization: 98%;   
transmission: 25%

1.2 x 109  

n/sec/cm2

3.1x 108  

n/sec/cm2

Neutron flux



Input Coil



Beam Guide



Target Designn

LHe level sensor
(1 per chamber)

thermometry
(1 per target body)fluxgate magnetometer

(2 per target body

LHe centrifugal 
pump driveshaft

control strings:
drainpipes & 

magnetometerspi-coil



π-Coil

• a rectangular coil that produces a vertical 
magnetic field in the path of the beam

• wound to prevent field leakage beyond the coil

• designed so that the spin of a typical cold neutron 
will precess a total of π radians over the path of the 
coil

π-coil
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• Moving LHe target about pi-coil isolates ϕPV from ϕPC signal that can be 
measured as an asymmetry in beam intensity between target states

BACK TARGET

PI-COIL

MAGNETIC SHIELDING

FLIPPING COIL

Polarimeter Designn

TOP VIEW
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Flight of the Neutronn

L R

L R

polarizer passes neutrons with 
“up” vertical spin state into target



Flight of the Neutronn

L R

L & R neutrons experience Larmor precession
about residual B-fields

R neutrons experience additional rotation due 
to NN weak interaction

L R

PC PV + PC



Flight of the Neutronn

L R

Pi-Coil precesses neutron spin 180o about vertical axis

L R

- PC - (PC + PV)



Flight of the Neutronn

L R
L & R neutrons experience Larmor precession about residual B-
fields

L neutrons experience additional rotation due to NN weak 
interaction with LHe

L R

-PC + (PC + PV)
= + PV

-(PC + PV) + PC
= - PV



Flight of the Neutronn

• Neutron spins are either parallel or antiparallel to the ASM

• Parallel spins pass through ASM and enter 3He Ion Chamber detector

• Asymmetry of count rate for flipping coil states & target states yields     
spin rotation
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Looking from downstream End.

Top view.



Segmented Ion Chamber Detector
• High flux n beam, current mode detector
• Not sensitive to gammas
• High efficiency, low noise
• Separate PV rotation (v independent) from NPV rotation (v dependent)
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