Measuring Parity Violating Neutron Spin Rotation

Kangfei Gan The George Washington Unversity

NNPSS '07

20 Jul 2007

Collaboration

C.D. Bass¹, B.E. Crawford², J.M. Dawkins¹, T.D. Findley¹, K. Gan³, B.R. Heckel⁴, J.C. Horton¹, C.R. Huffer¹, P.R. Huffman⁵, D. Luo¹, D.M. Markoff⁶, A.M. Micherdzinska¹, H.P. Mumm⁷, J.S. Nico⁷, A.K. Opper³, E. Sharapov⁸, M.G. Sarsour¹, W.M. Snow¹, H.E. Swanson⁴, V. Zhumabekova⁹

Indiana University / IUCF ¹ Gettysburg College ² The George Washington University ³ University of Washington ⁴ North Carolina State University / TUNL ⁵ North Carolina Central University ⁶ National Institute of Standards and Technology (NIST) ⁷ Joint Institute for Nuclear Research, Dubna, Russia ⁸ AI-Farabi Khazakh National University ⁹

NSF PHY-0100348

Motivations

Compared to strong interaction, the magnitude of weak interaction $\sim 10^{-7}$ is very small.

Direct exchange of short ranged weak vector bosons (W, Z) suppressed by repulsive strong interaction.

In Nucleon-Nucleon (NN) interactions, the weak interaction couplings are not well understood. DDH model (Desplanques et al, 1980)

*Holstein. Weak Interactions in Nuclei

Theoretical description

Historically the PV nuclear interaction has been described by the DDH quark model

=> 6 weak meson exchange coupling constants: f_{π} , h_{ρ}^{0} , h_{ρ}^{1} , h_{ρ}^{2} , h_{ω}^{0} , h_{ω}^{1} , h_{ω}^{0} , h_{ω}^{1}

$$-0.97 \left[f_{\pi} + 0.33 h_{\rho}^{0} - 0.11 h_{\rho}^{1} + 0.23 (h_{\omega}^{0} - h_{\omega}^{1}) \right] rad / m$$

*New "Hybrid" Effective Field Theory description is valid for $E_{Lab} < 40 \text{MeV}$ $\Rightarrow 5$ dimensionless Danilov parameters (related to the S-P scattering amplitudes: ${}^{1}S_{0} - {}^{3}P_{0}$, ${}^{3}S_{1} - {}^{1}P_{1}$, ${}^{3}S_{1} - {}^{3}P_{1}$ transitions) \Rightarrow and a long-range one-pion exchange parameter (proportional to the PV

pion-nucleon coupling constant h_{π}^{1})

*Liu, C.P., 2006, Parity Violating Observables of Two-Nucleon Systems in Effective Field Theory, arXiv: nucl-th/0609078 v1 28 Sep 2006

Low Energy, Few Body Interaction measurements are useful \Rightarrow Neutron Spin Rotation project

PV Neutron Spin Rotation

Forward scattering amplitude for low-energy neutrons:

$$f(0) = A + B(\vec{\sigma}_n \cdot \vec{S}_N) + C(\vec{\sigma}_n \cdot \vec{k}_n) + D(\vec{S}_N \cdot \vec{k}_n) + E(\vec{\sigma}_n \cdot (\vec{k}_n \times \vec{S}_N))$$

For ⁴He: $\vec{S}_N = 0 \implies f(0) = A + C(\vec{\sigma}_n \cdot \vec{k}_n) = f_{PC} + f_{PNC}(\vec{\sigma}_n \cdot \vec{k}_n)$

Index of Refraction of a medium:

$$n = 1 + \left(\frac{2\pi}{k^2}\right)\rho f(0)$$

Neutron's phase as it passes through the medium:

$$\phi_{PC} = \left(1 + \frac{2\pi\rho}{k^2} f_{PC}\right) k_n z$$

$$\phi_{PNC} = 2\pi \rho z f_{PNC}$$

For a neutron polarized in the +y direction:

 $\left|\uparrow\right\rangle_{y} = \frac{1}{\sqrt{2}} \left(\left|\uparrow\right\rangle_{z} + \left|\downarrow\right\rangle_{z}\right)$ $= \frac{1}{\sqrt{2}} \left(e^{i\phi_{PC}} e^{i\phi_{PNC}} \right) \left| \uparrow \right\rangle_{z} + \frac{1}{\sqrt{2}} \left(e^{i\phi_{PC}} e^{-i\phi_{PNC}} \right) \left| \downarrow \right\rangle_{z}$

$$\varphi_{PNC} = \phi_{\uparrow} - \phi_{\downarrow} = 2 \phi_{PNC} = 4 \pi \rho l f_{PNC}$$

- PV rotation angle / unit length ($d\phi_{PV}/dx$) approaches a finite limit for zero neutron energy:

 $d\phi_{PV}/dx \sim 10^{-6}$ rad/m based on dimensional analysis <u>3x10⁻⁷ rad/m goal in n+4He</u>

• $d\phi_{PC}/dx$ (due to B field) can be much larger than $d\phi_{PV}/dx$, and is v_n dependent

Cross section of Spin Rotation Apparatus

Side View

Polarizing Super Mirror

Input Coil

Beam Guide

Target Design

- a rectangular coil that produces a vertical magnetic field in the path of the beam
- wound to prevent field leakage beyond the coil
- designed so that the spin of a typical cold neutron will precess a total of π radians over the path of the coil

Polarimeter Design

Moving LHe target about pi-coil isolates \$\phi_{PV}\$ from \$\phi_{PC}\$ signal that can be measured as an asymmetry in beam intensity between target states

Flight of the Neutron

Flight of the Neutron

- Neutron spins are either parallel or antiparallel to the ASM
- Parallel spins pass through ASM and enter ³He Ion Chamber detector
- Asymmetry of count rate for flipping coil states & target states yields
 spin rotation

$$\sin \varphi = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

Looking from downstream End.

Top view.

Segmented Ion Chamber Detector

- High flux n beam, current mode detector
- Not sensitive to gammas
- High efficiency, low noise
- Separate PV rotation (v independent) from NPV rotation (v dependent)

$$n + {}^{3}He \rightarrow p + {}^{3}H + Q$$
$$(Q = 763.75 \text{ keV})$$

1 neutron $\rightarrow 2.5 \times 10^4$ ion pairs $e = 1.6 \times 10^{-19} C$ $\rightarrow 3.84 \times 10^{-15} C/n;$

So for a current of x(A):

$$\frac{x (C/s)}{3.84 \times 10^{-15} (C/n)} = 2.6 \times 10^{14} \cdot x (n/s)$$

Layout (4 segmentations)

Graph by: Chris S. Blessinger