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Fundamental Neutron Physics II

Neutron Sources and Neutron Beams

Fundamental Neutron Physics III

Neutron Beta Decay

Geoffrey Greene
University of Tennessee / Oak Ridge National Laboratory
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Introduction to Neutron Sources

Early neutron sources were based on simple nuclear processes:

Such sources are still used (“Pu-Be”) but are limited in intensity.

Modern neutron research is based at sources of two types:

1. High Flux Fission Reactor

2. Accelerator “Spallation” Sources 

nCBe +→+ 129α
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The Fission Reactor
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Enrico Fermi Leo Szilard 
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Each Fission Event Produces ~200Mev and ~1.5 “Useful” Neutrons
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Some Essential Features of a High Flux Reactor
Figure of Merit is the Peak Neutron Flux at the Core n/cm2/s

Key Design Features:

1. High Power Density

2. Compact Core

3. Highly Enriched Fuel

4. D20 Moderation and Cooling

5. Cryogenic Cold Source(s)

Ultimate engineering limitation is ability to 
remove heat from the compact core at ~100MW 
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57 MW High Flux Reactor

The Institute Laue Langevin, Grenoble
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Most Neutron Sources Have Multiple Moderators

The High Flux neutron Source at the ILL
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A Neutron Source Can Serve Many Neutron Instruments

Instrument Layout at the Institut Laue Langevin
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The Guide Hall at the ILL Houses ~30 Neutron Spectrometers
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The NIST High Flux Reactor 
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The NIST Cold Neutron research Center
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The NIST Cold Neutron research Center

NEW EXPT. HALL
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Spallation Sources



At ~1.4 GeV, Each Incident Proton Produce ~40 “Useful” Neutrons
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Neutron Production is Roughly Proportional to Power

0

20

40

60

80

100

0 500 1000 1500 2000 2500

total
spallation/high-energy fission
(n,xn)

LO
W

-E
N

ER
G

Y
 (<

 2
0 

M
eV

) N
EU

TR
O

N
S

PE
R

 IN
C

ID
EN

T 
PR

O
TO

N

PROTON ENERGY (MeV)

(Courtesy,Gary Russell)

NOTE: Spallation gives ~x10 more neutrons per MW 



The Spallation Neutron Spectrum is Broad

(Courtesy,Gary Russell)



P
TRANSMISSION//BACKSCATTERING

FLUX-TRAP/SPLIT TARGET

FLUX-TRAP/SOLID TARGET

P

TRANSMISSION/BACKSCATTERING

FLUX-TRAP/SOLID TARGET

WING

P

P

P

SLAB

P
TRANSMISSION/TRANSMISSION

TRANSMISSION/TRANSMISSION

TRANSMISSION/TRANSMISSION
FLUX-TRAP/SPLIT TARGET

Moderators are Engineered for Specific Neutronic Performance

(Courtesy,Gary Russell)



Greene NNPSS July 2007
20

Neutron Source Intensities Have Increased by 
Nearly 18 Orders of Magnitude* Since Chadwick



The Spallation Neutron Source







Target, Reflectors, and Moderators

Be reflector

Steel reflector

Cryogenic
H2 moderators

Ambient
H2 0 moderator

Mercury
target

Proton Beam



Target-Moderator System
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Neutron Guides
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At low energies S-wave scattering dominates, phase shift is given by ( )
cohkb
1cot −

=δ

bcoh

For most nuclear well depths and well sizes, 
it is unlikely to obtain a positive coherent scattering length:

bcoh critical range for bcoh<0

π
λ cohbNn

2

1−=

Index of refraction is therefore <1 for most nuclei *

*In the vicinity of A~50 (V,Ti,Mn) nuclear sizes are such that bcoh<1 and thus n>1
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Neutron Reflection from Matter

π
λ

2
Nb1n coh

2
2 −= ncrit =θcos

Neutrons will undergo complete “external” reflection 
from a polished surface for most materials

Ni or 58Ni are particularly useful as a neutron mirror material

For most neutron beams this means              

)(
107.1)(

3

Angstrom
xNicrit λθ

−
≈

210−≤critθ



Guide Section from SNS
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Neutron Guides can be used to Focus Neutron Beams 

Photo: Swiss Neutronics



Large Cross Section Guides are Commercially Available

Prototype Guide for SNS Ultracold Beam 
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Neutron Guide Installation at LANSCE

Photo: LANSCE
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A Single Moderator can Feed Multiple Neutron Guides

Photo: Institut Laue Langevin
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Reflectivity of Neutron Mirror

A Simple Neutron Mirror has Nearly Unit Reflectivity 
Up to  a Maximum Critical Angle
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Θcritical ≅ 2 mR/Å for 58Ni
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The “Supermirror” Extends the “Effective” θcritical
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~ 1000 layers

Commercial Supermirror Neutron Guides 
are Available With m ≈ 3 - 4

NOTE: Flux scales as Square of Critical Angle
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Neutron Polarization
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Neutron Polarization by Mirror Reflection
For a magnetic material, the index of refraction includes
an additional spin dependent term:

For a judicious selection of material (~60% Fe-40% Co at saturation works 
quite well) it is possible to have n=1 for one state and n<1 for the other.

The reflected (or transmitted beam from such a mirror will be polarized)

2
222

1 λ
π
µ

π
⎟
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Mirror Polarizers are Usually Configured as Multi-Channel “Benders”

Photo: Swiss Neutronics
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Photo: Swiss Neutronics

Some Advantages of Magnetic Supermirror Reflection Polarizers:

High Polarization ~99% 
Simple to Use 
Commercially Available
Highly Reliable

Some Disadvantages of Magnetic Supermirror Reflection Polarizers:

Challenging to Accurately Determine Polarization 
Limited Range of Neutron Energies
Beam is Deflected  
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Spin Polarized 3He Works as a Neutron Spin Filter

An un-polarized neutron beam incident on a Polarized 3He
Target yields a polarized neutron beam.

n + 3He → 3H + p

σJ=0 = 5300 barn at v0=2200 m/s

σJ=1 ≈ 0

For low energy neutron there is essentially NO 
capture in the triplet state
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Neutron polarization depends upon thickness of cell, pressure in cell, 3He 
polarization, etc. which are hard to measure to high accuracy

However, the neutron transmission depends on the same parameters:

The application of a few hyperbolic trigonometric identities provides a greatly 
simplified relation for the neutron polarization that is based only on (relatively) easy 
to measure neutron transmission:

Where T0 is the transmission through the cell when unpolarized and T is the 
transmission when the cell is polarized.

⎟
⎠

⎞
⎜
⎝

⎛
=

↑↓

2cosh HeHe
n
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⎠
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2tanh HeHe
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dPP ρσ

2

2
01 T

TPn −=

Accurate Absolute Determination of Polarization

Greene, Thompson, Dewey, NIM 356, 177, (1995)
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3He Optical Pumping Cell

3He Neutron Polarizer for n+p → d + γ Experiment

3He Cell in Oven

Polarizer System on Beamline at LANSCE
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Ultra Cold Neutrons

*see Golub, Richardson, Lamoreaux, Ultracold Neutrons
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Neutron Index of Refraction

π
λ

2
Nb1n coh

2
2 −= ncos crit =ϕ

For sufficiently large neutron wavelength, λ, n=0 and cosφcrit =90°

This implies that neutrons will be reflected at all angles
and can be confined in a “bottle”

These are known as “Ultracold Neutrons.”
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Ultracold Neutron Energies are Very Low

The Fermi “Pseudo-Potential” the most advantageous materials is ~ 100 neV 

This corresponds to a:

Neutron Velocity ≈ 500 m/s

Neutron Wavelength ≈ 500 Å

Magnetic Moment Interaction µn· B ≈ 100 neV for B~1Tesla

Gravitational Interaction mngh ≈ 100 neV for h~1 m

Ultracold Neutron can be trapped in 
material, magnetic, or gravitational bottles
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“A Thermal” Source of UCN*

In thermal equilibrium: ( )
ααα

ρ α dvevdvv
v

2
2

2

2
02 −Φ

=

*see Golub, Richardson, Lamoreaux, Ultracold Neutrons

m
Tk nB2≡α 0Φ is total thermal flux

For a maximum UCN energy V:
2

3

0

3
2
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⎛Φ
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nB
UCN Tk

V
α

ρ

For T~300k,  α~2.2x105 cm/s, and  V~ 250 neV: 3
0

1310 −Φ= − cmUCNρ

The most intense neutron sources in the world (HFIR at ORNL 
or ILL) have Φ0 ~1015 n/cm2/s So:

3100 −≈ cmUCNρ
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Limits to Thermal UCN Production

In thermal equilibrium:

Increase the Flux Φ0:  

Reactors are at the practical limit of heat transfer.
Only practical hope would be a 10-20 MW Spallation Source.

Lower the temperature Tn (also reduces α):

Practical limit for true moderator is about 20k which gives a 
density increase of ~x20

Practical Thermal Source Limit for UCN production:
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33102 −⋅≈ cmUCNρ
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Limits to Thermal UCN Production
In thermal equilibrium:
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Increase the Flux Φ0:  
Reactors are at the practical limit of heat transfer.
Only practical hope would be a 10-20 MW Spallation Source.

Lower the temperature Tn (also reduces α):

Practical limit for true moderator is about 20k which gives a density increase of ~x20

Practical Thermal Source Limit for UCN production:
33102 −⋅≈ cmUCNρ
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Super Thermal Source of UCN

• Neutrons of energy E ≈ 0.95 meV
(11 k or 0.89 nm) can scatter in liquid
helium to near rest by emission of a
single phonon.

• Upscattering by absorption of an 11 k
phonon is a UCN loss mechanism. But
population of 11 K phonons is suppressed 
by a large Boltzman Factor:  ~ e–11/T

where T~200 mk Golub and Pendlebury (1977)
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Fundamental Neutron Physics III

Neutron Beta Decay

Geoffrey Greene
University of Tennessee / Oak Ridge National Laboratory
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Neutron Beta Decay
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1934 Chadwick and Goldhaber make the first “precision”
measurement of the neutron mass by looking at the 
photo-disassociation of the deuteron 

Using 2.62MeV gammas from Thorium and determining the  
recoil energy of the protons they we re able to determine*:

*Chadwick and Goldhaber, Nature, 134 237 (1934)

0
1

2
1

2
1 nHDh +→+ν

0005.00080.1 ±=nM

Mn > Mp + Me

It is energetically possible for a neutron to decay to e + p

Historical Digression
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1930 Pauli proposes the “neutrino” to explain apparent energy 
and angular momentum non-conservation in beta decay 

1934 Fermi takes the neutrino idea seriously and develops his 
theory of beta decay 

1935 The β decay of the neutron is predicted by Chadwick and 
Goldhaber based on their observation that Mn>Mp+Me .
Based on this ∆M, the neutron lifetime is estimated at ~½ hr.

1948 Snell and Miller observe neutron decay at Oak Ridge

1951 Robson makes the first “measurement” of the neutron lifetime 

Wolfgang Pauli

Enrico Fermi
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Modern View of Neutron Decay:

Fermi’s View of Neutron Decay:
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Processes with the same Feynman Diagram as Neutron Decay

After D. Dubbers
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Introduction to Big-Bang Nucleosynthesis
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The “Later” Big Bang

Time Since Big Bang Temp

0.01s 1011K Era of Nuclear Physics

At this temperature, only familiar “nuclear physics” particles 
are present, the density is well below nuclear densities, and 
only well understood processes are relevant.

Neutrons and Protons are in thermal 
equilibrium through the processes:

νe + n ↔ p+ + e-

e+ + n ↔ p++ νe

kT
mm

p

n
pn

e
N
N )( −−

=



Greene NNPSS July 2007
63

The “Later” Big Bang

Time Since Big Bang Temp

1s 1010K Neutrinos “decouple”

Neutrino cross-sections are highly energy dependent and at 
this energy they become so small that neutrino scattering is 
insignificant. Thermal equilibrium between neutron and protons 
is no longer maintained.

If nothing else happened ALL the neutrons would decay via

and the universe would be end up with only protons (Hydrogen)

3
1≈

p

n

N
N

ν++→ −+ epn



Greene NNPSS July 2007
64

Big Bang Nucleosynthesis

Time Since Big Bang Temp

3 min 109K Nucleosynthesis Begins

Nuclei are now stable against photo disassociation e.g.

and nuclei are quickly formed. The Universe is now             
~87% protons  & 13% neutrons

3½ min 108K Nucleosynthesis Ends

Neutrons are all “used up” making 4He and the Universe is now   
has ~80% H and ~20% He.

γ+→+ dpn
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Some of the Reactions in Big Bang Nucleosynthesis
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Disassociation Energy 2.2MeV
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Some of the Reactions in Big Bang Nucleosynthesis
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Burles et al. 1999
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The Cosmic He/H Ratio Depends upon three quantities:

1) The Cooling rate of the Universe
Given by the heat capacity of the Universe
Determined mainly by the number of “light particles” (m ≤ 1 MeV )
Includes photons, electrons (positrons), neutrinos (x3)

2) The Rate at which Neutrons are decaying
The neutron lifetime

3) The rate at which nuclear interactions occur
Determined by the the logarithm of the density of
nucleons (baryons)*

*Because of expansion, the “absolute” baryon density is decreasing
with time so the density is scaled as the ratio of matter to photons.
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)28.10(018.0log023.0264.0 10 −++= npY τη

Cosmic Helium Abundance

Neutron Lifetime in Minutes

The Parameters of Big Bang Nucleosynthesis

Cosmic Baryon Density



Greene NNPSS July 2007
70

[ ] 023.0/)28.10(018.0Y264.0log nP10 −+−= τη

Cosmic Baryon Density

Neutron Lifetime in Minutes

Cosmic Helium Abundance

We can “invert” this line of reasoning. If we measure the 
Helium Abundance and the Neutron Lifetime, we can determine 
the density of “ordinary” matter in the universe.
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A Brief Digression on the Mass of the Universe

From Big Bang Nucleosynthesis, we conclude that, averaged
over the entire universe today, after expansion, there are a 
few protons per cubic meter.
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A Brief Digression on the Mass of the Universe

From Big Bang Nucleosynthesis, we conclude that, averaged
over the entire universe today, after expansion, there are a 
few protons per cubic meter.

Is this a lot, or this it a little?
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A Brief Digression on the Mass of the Universe

From Big Bang Nucleosynthesis, we conclude that, averaged
over the entire universe today, after expansion, there are a 
few protons per cubic meter.

Is this a lot, or this it a little?

Compared to What?
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A Scale for the Density of the Universe

From red-shift observations we know that the Universe is 
in a state of (nearly) uniform expansion. 

If the density of the Universe is sufficiently high, this 
expansion will come to a stop and a universal collapse will 
ensue.

If the density of the Universe is sufficiently low, it will 
expand forever.

The critical density of the universe is given by the Hubble 
constant H, and the Gravitational constant G

We define: G
H

8
3 2

critical π
ρ =

critical/ ρρΩ =
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By simply counting the number of visible stars and 
galaxies we find 

0.005  ≤ Ωtotal

From extremely simple reasoning we have:

0.005  ≤ Ωtotal ≤ 2.5

A Lower  Limit for Ω
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Ω is NOT necessarily constant over time

If Ω >1 at any time, Then Ω will continue to grow larger with time.

If Ω <1 at any time, Then Ω will tend toward zero with time.

Only if Ω = 1 EXACTLY, will it stay constant for all time

We observe that Ω is NOW not too far from 1  (0.01 < Ω < 2.5). Thus: 

Ω was EXTREMELY close to 1 early in the big bang   ( |Ω-1|≤10-16)

This raises the “Fine Tuning” question:

If Ω is very nearly equal to 1, is it exactly 1?

For a many compelling reasons (“fine tuning”, inflation, microwave 
background,…),We strongly believe that

ΩTotal = 1
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Big Bang Nucleosynthesis provides a determination 
of the Cosmic Baryon Density:

This can be compared with the determination from the
Cosmic Microwave Background:

The largest uncertainty to the nuclear theory of 
Big Bang nucleosynthesis is the experimental 

value of the neutron lifetime.

)%7.03.3( ±=ΩB

)%1.03.2( ±=ΩB

critical

Baryon
B ρ

ρ
≡Ω

BBN

CMB


