Evidence for New Structures in ¹⁷O

A.M.Crisp, K.W.Kemper, O.Momotyuk, B.T.Roeder, N.Keeley Florida State University

Outline

 Experiments Evidence for direct cluster transfer reaction mechanism - Selective Population – Excitation Function – DWBA Calculations Characterization of states But really, why do we care? Conclusion

Experiments

- Conducted at the John D. Fox Superconducting Accelerator Laboratory
- ◆ ¹²C(⁷Li,d)¹⁷O
- ◆ ¹²C(⁶Li,p)¹⁷O
- ◆ ¹³C(⁶Li,d)¹⁷O
- ◆ ¹⁶O(d,p)¹⁷O
- Used chamber setup below

Five-particle reactions

 ¹²C(⁶Li,p)¹⁷O in the energy range 26-32 MeV and ¹²C(⁷Li,d) in the energy range 32-35 MeV

 Strongly populated states seen at 11.815, 12.00, 12.22, and 12.42 MeV

- Spin and parities unknown for these states
- Selective population is evidence that these are direct cluster transfer reactions

¹³C(⁶Li,d)¹⁷O

 Note that while there is selective population of states, the states between 11.815 and 12.42 MeV are not seen

¹⁶O(d,p)¹⁷O

- Final experiment run to measure the reaction ¹⁶O(d,p)¹⁷O at a high enough energy to populate the states above 11 MeV
- Done to be sure that these states were not strongly populated with this reaction, as that would imply that they also have single-particle strength
- To obtain this spectrum, a spectrum from the reaction ¹²C(d,p) was normalized to, and subtracted from, the original SiO₂ spectrum

Excitation Function

 Provides additional evidence for direct cluster transfer
 Total cross section constant with respect to energy

¹²C(⁷Li,d)¹⁷O Excitation Function from 5-03-05

DWBA Calculations

Performed with FRESCO¹

- Calculations for the 6.86 and 7.58 MeV states for both reactions^{2,3,4}
 - Well known spins and parities of 5/2⁺ and 7/2⁺ respectively
 - 6.86 MeV: (1p_{1/2})⁴(1d_{5/2})¹

¹I.J.Thompson, Comp. Phys. Rep. 7, 167 (1988), ²M.F. Vineyard, J. Cook, K.W. Kemper, and M.N. Stephens, Phys. Rev. C 30, (1984), 916, ³N. Keeley, K.W. Kemper, Dao T. Khoa, Nucl. Phys. A726 (2003) 159, ⁴T.K. Li, D. Dehnhard, Ronald E. Brown, and P.J. Ellis, Phys. Rev. C13 (1976) 55

DWBA Calculations (cont'd)

- Various calculations for the 8.47 MeV (9/2⁺) level from both reactions $(1p_{1/2})^2(1d_{5/2})^3$ \diamond
- Calculations for the 11.815 MeV (7/2⁺) level, shown with various N and L values $(1p_{1/2})^2(1d_{5/2})^3$ \blacklozenge

I=2, L=5 7/2+

I=2. L=4 (7/2-)

N=3, L=2 (7/27) N=3, L=3 (7/2)

40

60

50

DWBA Calculations (cont'd)

Calculations for

 12.00 MeV (9/2+) - (1d_{5/2})⁵
 12.22 MeV (7/2⁻) - (1p_{1/2})³(1d_{5/2})²
 12.42 MeV (5/2+) - (1p_{1/2})²(1d_{5/2})³

Why Bother?

"How is this research going to help us get to Mars?" - Future astronaut Cross sections important Need good theoretical calculations Must understand how the structure of the nucleus behaves

Oxygen 17

- Well understood shell structure at low energies useful for testing current psd shell model calculations
- As excitation energy increases, structure becomes more complex
- Other nuclei around Oxygen 16

Conclusion

- Provided evidence for direct cluster transfer reaction mechanism
 - Important for understanding structure of nucleus
- Preliminary spin, parity, and structures given for various selectively populated states in ¹⁷O

Energy Level (MeV)	Jπ	Structure Configuration	Transfer Reaction
0.0	5/2+	$(1p_{1/2})^4(1d_{5/2})^1$	single-particle
6.86	5/2+	$(1p_{1/2})^4(1d_{5/2})^1$	five-particle
7.58	7/2+	$(1p_{1/2})^2(1d_{5/2})^3$	five-particle
8.47	9/2+	$(1p_{1/2})^2(1d_{5/2})^3$	five-particle
11.82	(7/2+)	$(1p_{1/2})^2(1d_{5/2})^3$	five-particle
12.00	(9/2+)	$(1d_{5/2})^5$	five-particle
12.22	(7/2-)	$(1p_{1/2})^3(1d_{5/2})^2$	five-particle
12.42	(5/2+)	$(1p_{1/2})^2(1d_{5/2})^3$	five-particle