

Jim Truran

Lecture II: Advanced Stellar Evolution and Nucleosynthesis

Stellar Evolution as a Function of Mass

□ low mass stars, planetary nebulae, and white dwarfs

□ massive stars, supernovae, and neutron stars

□ nucleosynthesis of elements past iron via neutron captures

Summer School in Nuclear Physics Laurence Berkeley National Laboratory

June 6-10, 2005

Nuclear Reactions and Energy Generation

Proton-Proton Hydrogen Burning Reactions

The pp-chains				
pp-1:	¹ H(p,e⁺γ)²H ²H(p,γ)³He ³He(³He,2p)⁴He	84.7%		
pp-2:	³ He(α,γ) ⁷ Be ⁷ Be(e ⁻ , v) ⁷ Li ⁷ Li(p,α) ⁴ He	13.8% 13.78%		
pp-3:	⁷ Be(p,γ) ⁸ B ⁸ B(β⁺ v)2 ⁴ He	0.02%		
fusion of 4 ¹ H \rightarrow 4He + 2e+ + 2ve + 26.7 MeV energy release				

Nuclear Reactions and Energy Generation

Network for the pp-chain I

$$\begin{split} &\frac{d^{1}\!H}{dt} = -2 \cdot \frac{1}{2} \cdot Y_{_{1_{H}}} \cdot Y_{_{1_{H}}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{1}\!H(p,e^{-}\nu)}} + 2 \cdot \frac{1}{2} \cdot Y_{_{3_{He}}} \cdot Y_{_{3_{He}}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{3}\!He(^{3}\!He,2p)}} \\ &\frac{d^{2}\!H}{dt} = -Y_{_{2_{H}}} \cdot Y_{_{1_{H}}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{2}\!H(p,\gamma)}} + \frac{1}{2} \cdot Y_{_{1_{H}}} \cdot Y_{_{1_{H}}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{1}\!H(p,e^{-}\nu)}} \\ &\frac{d^{3}\!He}{dt} = -2 \cdot \frac{1}{2} Y_{_{3_{He}}} \cdot Y_{_{3_{He}}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{3}\!He(^{3}\!He,2p)}} + Y_{_{2_{H}}} \cdot Y_{_{1_{H}}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{2}\!H(p,\gamma)}} \\ &\frac{d^{4}\!He}{dt} = \frac{1}{2} Y_{_{3_{He}}} \cdot Y_{_{3_{He}}} \cdot \rho \cdot N_{_{A}} \langle \sigma \upsilon \rangle_{_{^{3}\!He(^{3}\!He,2p)}} \end{split}$$

Calculated Solar Neutrino Fluxes

S(E) Factors for Critical Rates for Solar Neutrinos

Nuclear Reactions and Energy Generation

Reactions in the CNO cycles

CNO-1:	¹² C(p,γ) ¹³ N ¹³ N(β+ν) ¹³ C ¹³ C(p,γ) ¹⁴ N	S _{12C(p,γ)} =3	10 ⁻³ MeV-barn
	¹⁴ N(p,γ) ¹⁵ O ¹⁵ O(β+ν) ¹⁵ N	S _{14N(p,γ)} =2	10 ⁻³ MeV-barn
	¹⁵ N(p,α) ¹² C	S _{15N(p,α)} =1	10 ⁺² MeV-barn
CNO-2:	¹⁵ N(p,γ) ¹⁶ O ¹⁶ O(p,γ) ¹⁷ F ¹⁷ F(β ⁺ ν) ¹⁷ O ¹⁷ O(p,α) ¹⁴ N	S _{15N(p,γ)} =5	10 ⁻² MeV-barn
CNO-3:	¹⁷ O(p,γ) ¹⁸ F ¹⁸ F(β ⁺ ν) ¹⁸ O ¹⁸ O(p,α) ¹⁵ N	⇒ CNO-4	

Nuclear Reactions and Energy Generation

Hydrogen Burning Phase of Stellar Evolution

CNO Burning as a Function of Temperature

CNO Hydrogen Burning in a 20 M_☉ Star

Helium Burning Reactions in Stars

Application of Saha Equation For calculating ⁸Be equilibrium: $N(^{8}Be) = N_{\alpha}^{2} \cdot \hbar^{3} \cdot \left(\frac{2\pi}{\mu \cdot kT}\right)^{3/2} \cdot e^{\left(-\frac{Q}{kT}\right)}$

Helium Burning Reactions in Stars

Example for ⁸Be equilibrium abundance:

Case of typical He-burning: T=0.1GK \Rightarrow T₉=0.1; ρ =10⁵ g/cm³

$$N(^{8}Be) = 6 \cdot 10^{-35} \cdot N_{\alpha}^{2} \cdot T_{9}^{-3/2} \cdot e^{\left(-\frac{1.068}{T_{9}}\right)}$$
$$N(^{8}Be) \approx 4.4 \cdot 10^{-38} \cdot N_{\alpha}^{2}$$
$$N = \rho \cdot N_{A} \cdot \frac{X_{i}}{A_{i}} \implies \frac{X(^{8}Be)}{X_{\alpha}^{2}} \approx 1.3 \cdot 10^{-9}$$

~ one ^8Be nucleus for 10 9 α particles

Helium Burning Reactions in Stars

Helium Burning Reactions in Stars

¹²C(α , γ)¹⁶O, the Holy Grail

Level and Interference Structure

Uncertainty in low energy extrapolation

Helium Burning Reactions in Stars

burned regions

Evolution Past Hydrogen Burning

Core Temperature and Density Evolution in Stars

Distinguishing Low Mass and Massive Star Behaviors

□ The Virial Theorem predicts a dependence $T \propto M^{2/3}\rho^{1/3}$ of core temperature on density for an ideal gas law.

C Equality of gas pressure and degeneracy pressure yields $T \propto \rho^{2/3}$.

□ The critical issue is whether the temperature is sufficient to ignite the H, He, C, or O fuel prior to reaching degeneracy.

Stellar and Supernova Nucleosynthesis

AGB Star - Planetary Nebula

Massive Star - SNII

Evolution of Intermediate Mass (AGB) Stars

Nucleosynthesis in Red Giant Stars

- ❑ Asymptotic giant stars are an advanced stage of evolution of all low mass stars 1 < M_{*} < 10 M_☉
- Thermal pulses in their helium burning shells provide an environment for the production of both ¹²C and many isotopes of heavy nuclei (sprocess products).
- □ Incomplete helium burning leaves the He intershell ¹²C rich and results in the limit in the formation of a "carbon star."
- **These products are returned to the interstellar gas via winds and planetary nebula ejection.**

Heavy Ion Reactions: Advanced Burning Stages

Subsequent to helium burning, stars more massive than
10 M are sufficiently hot to continue thermonuclear
burning. The next stages are:

- □ Carbon burning, proceeding via ¹²C + ¹²C
- □ Neon burning, initiated via ²⁰Ne photodisintegration
- □ Oxygen burning, proceeding via ¹⁶O + ¹⁶O

□ The final stage of energy generation involves the conversion of ²⁸Si to iron-peak nuclei, in what is known as silicon burning -or the "equilibrium" process.

□ These stages leave in their wake a layered compositional structure, with an iron core that is on the verge of collapse in the absence of further nuclear fuel.

Nuclear Astrophysics: Perspective

Onion-like structure of a <u>presupernova</u> <u>star</u> several million years after its birth:

mass: $10 \dots 10^2 M_{\odot}$ radius: $50 \dots 10^3 R_{\odot}$

- shells of different composition are separated by active thermonuclear burning shells
- core Si-burning leads to formation of central <u>iron core</u>

Nuclear Statistical Equilibrium Conditions

Heavy Ion Reactions: Advanced Burning Stages

⁵⁶Ni Production in Explosive Nucleosynthesis

Silicon Burning with and w/o Weak Interactions

Synthesis of Nuclei Beyond Iron

Nuclei heavier than iron (A > 60) are understood to be formed in neutron capture processes.

- The helium shells of red giant stars (≈ 1-10) provide the s-process environment, with the ¹³C(α,n)¹⁶O reaction providing neutrons.
- **Supernovae II provide the setting for the r-process.**
- Note the different production timescales for the two neutron capture processes – 10⁹ verses 10⁸ years.

Cosmic Abundances

4i

N

220

s-Process/r-Process in Solar System Matter

r-Process Nucleosynthesis: Theory

Courtesy: K.-L. Kratz, Mainz

Courtesy: Kaori Otsuki, UChicago

