

Jim Truran

Lecture I: Introduction and Overview

Nuclear Physics in Stellar Evolution and Nucleosynthesis
evidence of nuclear physics behaviors
energy generation in stars

Summer School in Nuclear Physics Laurence Berkeley National Laboratory

June 6-10, 2005

Nuclear Astrophysics: Perspective

□ The Universe emerged from the first three minutes of the cosmological Big Bang with a composition consisting of ¹H, ²D, ³He, ⁴He, and ⁷Li, with only trace abundances of heavy elements.

□ The synthesis of all elements heavier than ⁴He is then understood to occur in stars and supernova explosions over the history of the Galaxy.

□ Thermonuclear reactions proceeding in stellar cores serve both to power stars over their lifetimes of billions of years and to synthesize the common elements with which we are familiar - from carbon to the actinide nuclei thorium, uranium, plutonium, etc.

History of the Universe?

Nuclear Astrophysics: Perspective

Onion-like structure of a <u>presupernova</u> <u>star</u> several million years after its birth:

mass: 10 ... 10² M_o radius: 50 ... 10³ R_o

- shells of different composition are separated by active thermonuclear burning shells
- core Si-burning leads to formation of central <u>iron core</u>

□ The need for nuclear energy to power stars was recognized not long after the earliest discoveries in nuclear physics in the last century.

□ The gravitational energy available for the Sun is given by: $E_{grav} = 3GM_{\odot}^{2}/5R_{\odot} \approx 2.4 \times 10^{48} \text{ ergs}$

□ Which yields a possible burning lifetime (for a constant luminosity Sun: $\tau_{grav} = E_{grav} / L_{\odot} \approx 20$ million years

□ In contrast, thermonuclear burning of approximately 10% of the Sun's mass from hydrogen to helium (releasing \approx 7 MeV/nucleon) yields approximately 10⁵¹ ergs and can thus provide the Sun's luminosity of 3.9 x 10³³ erg s⁻¹ for a lifetime exceeding \approx 10¹⁰ years.

Nuclear Astrophysics: Perspective

□ Supernova energetics are tied to nuclear processes:

□ Type Ia are understood to be pure thermonuclear supernovae, powered by energy release in the incineration of a ¹²C and ¹⁶O degenerate core of mass 1.4 M_☉

□ The energy release in the conversion of one solar mass of a 50/50 mix of ¹²C and ¹⁶O to pure ⁵⁶Ni is (with an increase in binding energy per nucleon of 0.8 MeV) approximately 1.6 x 10⁵¹ ergs.

□ This is sufficient both to unbind the white dwarf and to account for the observed kinetic energy of the ejecta.
□ The luminosity of a Type Ia supernova at maximum is then provided by the decay energy of the transition from Ni to Fe via ⁵⁶Ni→⁵⁶Co→⁵⁶Fe.

Type Ia Supernova : 1994D

□ Type II supernovae (or "core collapse" supernovae) are powered rather by the gravitational energy release in the formation of a neutron star.

□ The formation of a 1.4 M_☉ neutron star of radius 15 km releases: $E_{grav} = 3GM_{NS}^{2}/5R_{NS} \approx 2.1 \times 10^{53} \text{ ergs}$

□ Thermonuclear reactions here again play an important role in synthesizing nuclei from oxygen to zinc. Type II supernovae are indeed the main source of such nuclei in galaxies.

□ For the case of supernova 1987A, observations of gamma rays from ⁵⁶Co decay to ⁵⁶Fe confirmed the ejection of 0.07 M_{\odot} of mass A=56 in the form of ⁵⁶Fe, powering the tail of the light curve.

Type II Supernova: Crab (Nebular Remnant) 1054

The Astronomer's Periodic Table of the Elements

After Ben McCall (UIUC)

"Cosmic" Abundances of the Elements

□ The "Cosmic" abundance patterns - which represent the integrated contributions from stars and supernovae in our Galaxy over some 14 billiion years - clearly reflect nuclear systematics, e.g.:

dominance of α-particle nuclei: ¹²C through ⁴⁰Ca
dominance of unstable α-nuclei products ⁴⁴Ti, ⁴⁸Ti, ⁵²Fe, ⁵⁶Ni, ⁶⁰Zn, ⁶⁴Ge, ⁶⁸Se, ⁷²Kr seen in decay products
nuclear statistical equilibrium centered on A=56, first noted by Hoyle (1946)

□ strong signatures of neutron shell structure in the abundance peaks in the heavy element region at magic numbers N=50, 82, and 126

- odd-even abundance trends
- □ existence of 4 stable odd-odd nuclei: ²D,⁶Li, ¹⁰B, ¹⁴N

"Cosmic" Abundances of the Elements

Valley of Beta Stability

Core Temperature and Density Evolution in Stars

□ Thermonuclear reaction rates for hot stellar interiors are generally determined by averaging the product of the relative velocity of the two interacting particles times the cross section < \sigma v > over a Maxwellian distribution of relative velocities.

□ For a particle of number density n_p interacting with target particles n_T of cross section σ and moving with velocity v, the number of interactions per target nucleus per unit time is $n_p \sigma v$ and the collision lifetime per target nucleus is $\tau_C = (n_p \sigma v)^{-1}$ seconds.

□ The number of collisions per unit volume per unit time is then $r = n_p(v) n_T(v) \sigma(v) v \text{ cm}^{-3} \text{ s}^{-1}$.

Nuclear Reactions and Energy Generation

□ The appropriate rate when averaged over a Maxwellian distribution of relative velocities is then $r = n_p n_T < \sigma v >$, where the n_p and n_T are now the total number densities.

□ The rate (where μ is the reduced mass and v the velocity of relative motion) is given more generally by:

 $r = n_p n_T \int_{-\infty}^{\infty} v \sigma(v) 4\pi (\mu/2\pi kT)^{3/2} \exp(-\mu v^2/2kT) v^2 dv$

□ The Gamow 'window' identifies the energy range for which the cross section needs to be experimentally or theoretically known.

Nuclear Reactions and Energy Generation

☐ It is common and useful in astrophysics to remove the dominant Coulomb barrier dependence and identify the astrophysical S factor. $S(E) = \sigma \cdot e^{2\pi \cdot \eta}$

Where:

$$2\pi \cdot \eta = \frac{2\pi \cdot Z_1^2 \cdot Z_2^2 \cdot e^2}{\hbar \sqrt{\frac{2 \cdot E_{cm}}{\mu}}}$$

□ With the Coulomb barrier dependence thus removed, the residual factor S(E) is significantly less energy dependent. Note representative cases:

Nuclear Reactions and Energy Generation

Nuclear Burning Stages

□ The choice of nuclear fuel as a stellar energy choice is dictated largely by two factors:

Charge: The Coulomb barrier energy is typically significantly higher than the thermal energy of the constituent particles.

 $B_{C} = 1.44 Z_{1}Z_{2}/R MeV \approx Z_{1}Z_{2}/A^{1/3} MeV$ $E_{thermal} = kT \approx 0.86 MeV (T/10^{9}K)$

Abundance: The earliest phases of energy generation involve hydrogen and helium, the dominant BBN products. The initial composition of the Sun involved less than 2% elements heavier than helium.

Representative Optimum Bombarding Energies

Reaction	B _C (MeV)	E ₀ (keV)	ΔE ₀ (keV)	T(K)
$^{2}\mathrm{D}(\mathrm{p},\mathrm{\gamma})^{3}\mathrm{He}$	0.83	5.7	4.3	107
p+p	0.95	5.7	4.3	107
⁶ Li(p,α) ³ He	1.9	12	6.2	107
$^{10}\mathrm{B}(\mathrm{p},\alpha)^{7}\mathrm{Be}$	2.7	17	7.3	107
$^{12}C(\alpha, \gamma)^{16}O$	4.8	300	180	2x10 ⁸
$^{12}C + ^{12}C$	12.5	2.4 MeV	1 MeV	109

Nuclear Reactions and Energy Generation

Hydrogen Burning Phase of Stellar Evolution

Proton-Proton Hydrogen Burning Reactions

Nuclear Reactions and Energy Generation

$$\begin{split} \frac{d^{1}H}{dt} &= -2 \cdot \frac{1}{2} \cdot Y_{1_{H}} \cdot Y_{1_{H}} \cdot \rho \cdot N_{A} \langle \sigma \upsilon \rangle_{^{1}H(p,e^{-}\nu)} + 2 \cdot \frac{1}{2} \cdot Y_{^{3}He} \cdot Y_{^{3}He} \cdot \rho \cdot N_{A} \langle \sigma \upsilon \rangle_{^{3}He(^{3}He,2p)} \\ \frac{d^{2}H}{dt} &= -Y_{2_{H}} \cdot Y_{1_{H}} \cdot \rho \cdot N_{A} \langle \sigma \upsilon \rangle_{^{2}H(p,\gamma)} + \frac{1}{2} \cdot Y_{1_{H}} \cdot Y_{1_{H}} \cdot \rho \cdot N_{A} \langle \sigma \upsilon \rangle_{^{1}H(p,e^{-}\nu)} \\ \frac{d^{3}He}{dt} &= -2 \cdot \frac{1}{2} Y_{^{3}He} \cdot Y_{^{3}He} \cdot \rho \cdot N_{A} \langle \sigma \upsilon \rangle_{^{3}He(^{3}He,2p)} + Y_{2_{H}} \cdot Y_{1_{H}} \cdot \rho \cdot N_{A} \langle \sigma \upsilon \rangle_{^{2}H(p,\gamma)} \\ \frac{d^{4}He}{dt} &= \frac{1}{2} Y_{^{3}He} \cdot Y_{^{3}He} \cdot \rho \cdot N_{A} \langle \sigma \upsilon \rangle_{^{3}He(^{3}He,2p)} \end{split}$$

Reactions in the CNO cycles

CNO-1:	¹² C(p,γ) ¹³ N ¹³ N(β+ v) ¹³ C ¹³ C(p,γ) ¹⁴ N	$S_{12C(p,\gamma)}$ =3 10 ⁻³ MeV-barn
	¹⁴ N(p,γ) ¹⁵ O ¹⁵ O(β+ν) ¹⁵ N	$S_{14N(p,\gamma)}$ =2 10 ⁻³ MeV-barn
	¹⁵ N(p,α) ¹² C	$S_{15N(p,\alpha)}$ =1 10 ⁺² MeV-barn
CNO-2:	$^{15}N(p,\gamma)^{16}O$ $^{16}O(p,\gamma)^{17}F$ $^{17}F(\beta^{+}\nu)^{17}O$ $^{17}O(p,\alpha)^{14}N$	$S_{15N(p,\gamma)}$ =5 10 ⁻² MeV-barn
CNO-3:	¹⁷ O(p,γ) ¹⁸ F ¹⁸ F(β ⁺ ν) ¹⁸ O ¹⁸ O(p,α) ¹⁵ N	⇒ CNO-4

Solar Neutrino Fluxes

