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Nuclear Astrophysics: Perspective

(' The Universe emerged from the first three minutes of
the cosmological Big Bang with a composition consisting of
1H, 2D, 3He, “He, and "Li, with only trace abundances of
heavy elements.

U The synthesis of all elements heavier than “He is then
understood to occur in stars and supernova explosions over
the history of the Galaxy.

U Thermonuclear reactions proceeding in stellar cores
serve both to power stars over their lifetimes of billions of
years and to synthesize the common elements with which
we are familiar - from carbon to the actinide nuclei
thorium, uranium, plutonium, etc.
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Onion-like structure
of a presupernova
star several million
years after its birth:

mass: 10 ... 10? M,
radius: 50 ... 103 R

» shells of different
composition are
separated by active
thermonuclear
burning shells

Y

core Si-burning
leads to formation
of central iron core




Nuclear Astrophysics: Perspective

(] The need for nuclear energy to power stars was
recognized not long after the earliest discoveries in nuclear
physics in the last century.

U The gravitational energy available for the Sun is given
by: Egpay = 3GM?/5Rg = 2.4x10% ergs

L Which yields a possible burning lifetime (for a constant
luminosity Sun: <, =E,  /Lg =20 million years

U In contrast, thermonuclear burning of approximately
10% of the Sun’s mass from hydrogen to helium (releasing
=~ 7 MeV/nucleon) yields approximately 103! ergs and can
thus provide the Sun’s luminosity of 3.9 x 1033 erg s’! for a
lifetime exceeding = 1010 years.
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U Supernova energetics are tied to nuclear processes:

U Type Ia are understood to be pure thermonuclear
supernovae, powered by energy release in the incineration
of a 12C and 0 degenerate core of mass 1.4 M
J The energy release in the conversion of one solar
mass of a 50/50 mix of 12C and '°O to pure Ni is (with
an increase in binding energy per nucleon of 0.8 MeV)
approximately 1.6 x 105! ergs.
 This is sufficient both to unbind the white dwarf and
to account for the observed Kkinetic energy of the ejecta.
d The luminosity of a Type Ia supernova at maximum
is then provided by the decay energy of the transition
from Ni to Fe via *Ni—3Co—>>¢Fe.
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Nuclear Astrophysics: Perspective

d Type II supernovae (or “core collapse” supernovae) are
powered rather by the gravitational energy release in the
formation of a neutron star.

J  The formation of a 1.4 Mg neutron star of radius 15
km releases: Egray = 3GM*/5Ryg = 2.1x103 ergs
U Thermonuclear reactions here again play an
important role in synthesizing nuclei from oxygen to
zinc. Type II supernovae are indeed the main source of
such nuclei in galaxies.

L For the case of supernova 1987A, observations of
gamma rays from 56Co decay to 5°Fe confirmed the
ejection of 0.07 Mg, of mass A=56 in the form of >Fe,
powering the tail of the light curve.

Type II Supernova: Crab (Nebular Remnant) 1054




The Astronomer’s Periodic Table of the Elements
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Nuclear Astrophysics: Perspective

] The “Cosmic” abundance patterns - which represent
the integrated contributions from stars and supernovae in
our Galaxy over some 14 billiion years - clearly reflect
nuclear systematics, e.g.:

O dominance of a-particle nuclei: 12C through 4°Ca

O dominance of unstable a-nuclei products 44Ti, 48Ti,
S2Fe, 5Ni, 99Zn, %4Ge, %8Se, 2Kr seen in decay products
J nuclear statistical equilibrium centered on A=56,
first noted by Hoyle (1946)

 strong signatures of neutron shell structure in the
abundance peaks in the heavy element region at magic
numbers N=50, 82, and 126

U odd-even abundance trends

O existence of 4 stable odd-odd nuclei: 2D,Li, 1°B, 14N

“Cosmic” Abundances of the Elements
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Valley of Beta Stability
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Core Temperature and Density Evolution in Stars
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Nuclear Reactions and Energy Generation

[ Thermonuclear reaction rates for hot stellar interiors
are generally determined by averaging the product of the
relative velocity of the two interacting particles times the
cross section <ov> over a Maxwellian distribution of

relative velocities.

[ For a particle of number density n, interacting with
target particles n; of cross section o and moving with
velocity v, the number of interactions per target nucleus
per unit time is n, ov and the collision lifetime per target
nucleus is 7= (n, ov)! seconds.

U The number of collisions per unit volume per unit time
is then r =n (v) ny(v) o(v) v em™ s,

Nuclear Reactions and Energy Generation

] The appropriate rate when averaged over a Maxwellian
distribution of relative velocities is then r = n, n; <ov>,

where the n, and ny are now the total number densities.

L The rate (where p is the reduced mass and v the velocity
of relative motion) is given more generally by:

r=n,nyf” v o(v) 4n (W2nkT)>? exp(- uv?/2KT) v2 dv

3x108 [

Maxwellian Yelocity 1
1x107 K Distributions

J The Maxellian temperature
dependence is as shown=>
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Nuclear Reactions and Energy Generation

(d The Gamow ‘window’ identifies the energy range for
which the cross section needs to be experimentally or

theoretically known.

[ Stellar Energy Range -- Gamow Window
-- Resonance Width
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] Tt is common and useful in astrophysics to remove the
dominant Coulomb barrier dependence and identify the

astrophysical S factor. 27
Py S(E)=c-e*""

d  Where: WL RVARY AR S

2= N
h ) cm
\ o«

) With the Coulomb barrier dependence thus removed,
the residual factor S(E) is significantly less energy
dependent. Note representative cases:
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Experimental difficulties!
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Nuclear Reactions and Energy Generation

Nuclear Burning Stages

U The choice of nuclear fuel as a stellar energy choice is
dictated largely by two factors:

L Charge: The Coulomb barrier energy is typically
significantly higher than the thermal energy of the
constituent particles.

B.=1.44 Z,7Z,/R MeV = Z,Z,/A"3 MeV
Eerma = KT = 0.86 MeV (T/10°K)
 Abundance: The earliest phases of energy generation
involve hydrogen and helium, the dominant BBN
products. The initial composition of the Sun involved less
than 2% elements heavier than helium.
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Representative Optimum Bombarding Energies

Reaction B-(MeV) E,(keV) AE(keV) T(K)
’D(p.y)*He 0.83 5.7 4.3 107
p+p 0.95 5.7 43 107
SLi(p,c)’He 1.9 12 6.2 107
10B(p,ct)’Be 2.7 17 73 107

12C(q, y)160 4.8 300 180  2x108
2C +12C 12.5 24MeV 1 MeV 107

Nuclear Reactions and Energy Generation

Hydrogen Burning Phase of Stellar Evolution
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Nuclear Reactions and Energy Generation

Proton-Proton Hydrogen Burning Reactions

The pp-chains

H(p,e*v)’H
2H(p,y)*He
3He(®He,2p)*He 84.7%

3He(a,y)'Be 13.8%
"Be(e-,v)’Li 13.78%
"Li(p,a)*He

"Be(p,y)®B 0.02%
8B(B*v)24He

fusion of 4 "H — 4He + 2e+ + 2ve + 26.7 MeV energy release

Nuclear Reactions and Energy Generation

Network for the pp-chain |
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Reactions in the CNO cycles

CNO-1: 12C(p,v)"PN  Syyep,=3 10° MeV-barn
13N(B+v)13C
3C(p,y)"*N
150(B+v)15N
BN(p,a)1?C  Sysyp,q=1 102 MeV-barn

CNO-2: BN(p,7)'®0  Sysyp,=5 102 MeV-barn
160(p,'}’)17F
17F(B+v)170
170(p, o) 4N

CNO-3: 170(p,y)18F

18F(B+V)180
180(p,a)’SN = CNO-4

Solar Neutrino Fluxes
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