Nuclear Structure Ill: What to Do in Heavy Nuclei

J. Engel
University of North Carolina

June 15, 2005



@ Hartree-Fock
@ History

© Results

@ Collective Excitations



Hartree-Fock
Outline

@ Hartree-Fock



Hartree-Fock
The Situation in Heavy Nuclei

Above A = 100, shell model is usually unworkable; need too large
a valence space. Main alternative is mean-field theory and
extensions. Let's begin with Hartree-Fock theory.

Call the Hamiltonian H (it won't be the NN interaction itself).
The Hartree-Fock ground state is the Slater determinant with the
lowest expectation value (H). Employ:

Theorem (Thouless)

Suppose |¢) = aI e a}|0> is a Slater determinant. The most
general Slater determinant not orthogonal to |¢) can be written

|¢') = exp( Y Crmialai)lg) = [1+ > Crial,a; + O(C?)]|¢)

m>Fi<F m,i




Hartree-Fock
Variational Procedure

Find best Slater det. |¢) by minimizing H = (¢/|H|¢') /(¢'|¢'):

OH _
9C :<¢\HCLILCLJ‘\¢>:0 Yn>F, j<F (1)
nj
Write H as
2
1
H= Z % + Z VQ/B = ZTabaILab - Z ZVab,cdalaZacad ,
@ a<p a,b a,b,c,d

where Ty, = (a| Z-b) and Vipeq = (ab|Viz|ed) — (ab|Via|dc).
Then equation (1) gives
i =Toj+ > Vikwk =0 Vn>Fj<F
k<F
This will certainly be true if we can find a single particle basis in
which h is diagonal, i.e. solve the Hartree-Fock equations

hay = Tap + Y Vakok = Oav€a ¥ a,b . (2)
k<F




Hartree-Fock
Self Consistency

Note that in equation (2) the potential-energy term depends on all
the occupied levels. So do the eigenvalues ¢,, therefore, and

Solutions are ‘“self-consistent”
To solve equations:

© Start with a set of basis states a, b, c... and calculate the
matrix elements of h according to equation (2)

@ Diagonalize h to obtain a new set of basis states a/, b’ . ..

© Repeat steps 1 and 2 until you get essentially the same basis
out of step 2 as you put into step 1.




Hartree-Fock
Coordinate Space

In coordinate space, equations are

v? N .
—5—du(r) + /drV ;gi)] r )| Palr)
- p(r) |
—Z [/dr V(r—r |)¢>] (r)ga(r))| @j(r) = €adpu(r)
J<F .

First potential term involves the “direct” (intuitive) potential

Ui(r) = /dr'V(|r —r'|)p(r) .
Second term contains the nonlocal “exchange potential”
= V(e =25 (x")e;(x) -
J<F

Self consistency means that these potentials produce wave s.p.
wave functions that in turn regenerate the same potentials.
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History

Brief History of Mean-Field Theory

o

Big problem early: HF doesn't work with realistic NN
potentials because of hard core, which isn't reflected in Slater
determinants.

Included hard core implicitly through effective interaction:
Brueckner G matrix, the solution to Bloch-Horowitz equations
for a nucleon pair in the presence of other nucleons. Still
didn't work perfectly.

v A
above
— _-—— - + Fermi + _-—— - +
G V surface
V [Rp——
\Y

Tried to include three-body interaction approximately as
density-dependent two-body interaction, in the same way as
the two-body interaction is approximately a density-dependent
mean field. This gave better results and had convenient
“zero-range” approximation.



@ Phenomenology successfully evolved toward zero-range
density-dependent (Skyrme) interactions, with

H = to (1+x0B,) d(r; —r2)
+%t1 (L+21P;) [(V1— V2)?5(r1 —r2) + h.c.]
+to (1 +22P,) (V1 — V2) - 6(r1 — 12)(V1 — V)
+%t3 (14 x3P,) d(r1 — r2)p*([r1 + r2]/2)
+iWo (014 02) - (Vi — V) X 8(r1 — 12)(Vi1 — V) |

where 14
po _ g1 0?2 :
2
and t;, x;, Wy, and « are adjustable parameters.

Abandoning first principles leads to still better accuracy.



© Convenient because exchange potential is local; easy to solve.
Also, variational principal can be reformulated in terms of a
local energy-density functional. Defining

Pab = Z<b‘¢l> ¢1|a p(I‘ Zprer s — Z ‘(ﬁz r, S

i<F i<F,s
()= D IVi(r,s)P, I(x)=—i Y ¢ilr,s)[Vi(r,s') x 0,y
1<F,s i<F,s,s’

and

3 1 1
—1 t i
3 op I 16p a4 16(31+5 2)pT

3 1 2
+a(9t1 = 5t2)(vp) + ZWopV -J+ 372(?51 = tz)J ]

E = [dr [—T+

you find

E—) .€pi
8( azlep ) :hab_eaéab:()a V(l,b
Pab

i.e. the HF equations. Density dependence makes h more
complicated than what you'd get by just varying |¢).



@ “Shoot, we can include more correlations, get back to first
principles, if we mess with the density functional via:”

Theorem (Hohenberg-Kohn and Kohn-Sham, vulgarized)

3 universal functional of the density that, together with a simple
one depending only on external potentials, gives the exact
ground-state energy and density when minimized through
Hartree-like equations. (Finding the functional is up to you!)

At least two recent EFT-like approaches to constructing functional

e Power counting used to identify important terms; coefficients
calculated from first principals (Furnstahl et al).

e Expansion in local-density scheme with coefficients fit to data
(Dobaczewski et al).

Both approaches have a way to go. In mean time we have pretty
good empirical functionals, with parameters fit in nuclei near
closed shells. More sophisticated version of Bethe-Weiszacker.
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Results

Modern Results: Shell Structure Near Neutron Drip Line

Sl interaction
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H. Sagawa, Phys. Rev. C65, 064314 (2002)



Results
Shell Stucture Summary

Nuclear Shell Structure
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From J. Dobaczewski et al., Phys. Rev. C 53, 2809 (1996).



Results
Densities Near Drip Lines

This and next 3 slides from J. Dobacewski,
http://www.fuw.edu.pl/~dobaczew/RIA.Summer.Lectures/slajd45.html
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Results

Two-Neutron Separation Energies
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Experiment Theory



Results
Deformation
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Results

Range of Predictions for Drip Line
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Collective Excitations
Collective Excited States

Can do time-dependent Hartree-Fock in an external potential
f(r,t) = f(r)e™™! + fi(r)e™t. TDHF equation is:

dpay, _ OE[p]
dt 8pab

Assuming small amplitude oscillations

—1

P = po +6pe—iwt +6pT€—iwt

gives
. Ohmi Ol
ZW&pmz‘ = Z = 5pnj + = 5pjn + fmi
- apnj a;Ojn
n>Fj<F
Setting f = 0 gives the condition for a “resonance” — an

oscillation that persists in the limit of no forcing — which
corresponds to an excited stationary state (a pole in the response
function) |E = hw). The resulting dp = pi(E), is the transition
density to |E). Small amplitude approximation is usually called the
“random phase approximation” (RPA).



Collective Excitations

Ground-State Density, Transition Density, etc.

Here, very explicitly, are the various types of densities we've been
discussing. The density operator itself in first quantization is

pP(r) = d(r —rlP)
e
The ground-state and transition densities are then

p(r) = (0[p°*(r)[0) , per(E, 1) = (E[p%®(r)[0) .

To calculate ground-state expectation values or transition matrix
elements of an operator:

OGN0 = [ drf()otr).  (ELFG0) = [ drf@)plB.x).

Finally, the one-body density matrix we used for the variational
principle, which is more general than Slater determinants, is (in
second quantization)

pab = (0a}aa|0) .



Collective Excitations

RPA Collectivization of Transition Strength
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R(E) = |(E|f]0)|?

J

Figure shows the effects
of the “residual” NN
interaction — that is, its

effects beyond the
mean-field

approximation — on the
isovector dipole strength

(f=edp2)

This and next 3 slides from N. Paar,http://crunch.ikp.physik.tu-darmstadt.de/~paar/rrpa.html



Collective Excitations

More Isovector Dipole in RPA
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Collective Excitations

Pygmy Resonances Near the Drip Line?
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Collective Excitations
Quadrupole Phonons Near the Drip Line
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Collective Excitations

Smalll Amplitude TDHF: Dipole Resonance in ®Be
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This slide and next courtesy of T. Nakatsukasa



Collective Excitations

Surface Octupole Vibration in 1°O
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Collective Excitations

Beyond Mean-Field Theory

One-dimensional “energy surface”,
now different for each state in the
rotational band.

Project deformed Slater
determinants onto states
with good angular

i Qq (fm
momentum ar.1d/or mix o 100 200 (300) 100 500
Slater determinants: . ;

40::5 IOIOI (I) | 0 [] U/—

W) = [dq g(q) |o(q))

The coordinate ¢ can be a
deformation parameter like
[ or an orientation angle 6
(for projection).

From M. Bender and P.-H. Heenen,
Nuclear Physics A713, 390 (2003)




Collective Excitations
Challenges and the Road Ahead

@ Better understanding of how much physics can be subsumed
into a “Kohn-Sham density functional” (i.e. into mean-field
equations)

@ Development of methods that include the things mean-field
theory cannot

@ Better connection with the “bare” NN interaction

@ Quantitative predictions in neutron-rich nuclei, before there's
a RIA (important for nucleosynthesis even after RIA)
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