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The NN Interaction

Let’s try to model it as a traditional non-relativistic potential.

Example: Argonne v18

vij = vγ
ij + vπ

ij + vR
ij

Electromagnetic term comes from QED. One-pion-exchange part
differentiates between neutral and charged pion exchange:

vπ
ij = const.
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Xm
ij ≈ e−mrij

rij

[
~σi · ~σj +
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+
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mrij
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)
(3(r̂ij · σi)(r̂ij · σj)− ~σi · ~σj)

]
The rest (vR

ij) is two-pion and heavy-meson exchange and contains
about 40 adjustable parameters. Depends on orbital angular
momentum as well as radial distance, spin and isospin.
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Fitting the Parameters

Potential fitted to

1787 pp and 2514
np phase shifts for
E = 0− 350 MeV

nn scattering
length

deuteron binding
energy
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From http://www.phy.anl.gov/theory/research/av18/index.html
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Another Partial Wave. . .
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NN GFMC: NCSM: RSM:

Roughly What It Looks Like:

From E. Ormand, http://www.phy.ornl.gov/npss03/ormand2.ppt

Note “hard core” at r <∼ .6 fm.

Prevents nucleons from getting
close. Other equally good model
potentials have hard cores that
differ significantly from Argonne’s
because when nucleons get closer
they can excite internal degrees of
freedom that we don’t completely
understand. so. . .

How real is the hard core?
Even if it is real we want to get
rid of it because it messes up any
attempt at perturbation theory in
nuclear structure.



NN GFMC: NCSM: RSM:

One Answer: Vlow k

In spirit of effective field theory, restrict the energies in our
equations with to those in which the nucleon is a sensible degree of
freedom. Replace Schrödinger equation in momentum space:

~2k2

mN
〈k|Ψ〉+

∫ ∞

|k′|=0
d3k′ 〈k|VNN |k′〉〈k′|Ψ〉 = E〈k|Ψ〉

with

~2k2

mN
〈k|Ψ〉+

∫ Λ

|k′|=0
d3k′ 〈k|Vlow k|k′〉〈k′|Ψ〉 = E〈k|Ψ〉 .

Here k is the relative momentum of the two nucleons and Λ is a
low momentum scale often taken to be about 2 fm−1, which
corresponds to Elab = 350 MeV for collisions. This cutoff should
be fine for nuclear structure calculations because they don’t
consider excitations higher than that.

Amazingly...
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“Low-k-izing” NN Potentials

Doesn’t matter which of the very
different potentials you start with.

Get a unique Vlow k !

In coordinate space hard core is
gone. Makes certain kind of
nuclear-structure calculations
much easier, though wth some
methods you can still start from
the the hard-core potentials.
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NN GFMC: NCSM: RSM: Green’s Function Monte Carlo

Green’s Function Monte Carlo

Nearly exact calculations with Argonne v18 up to 12C. Spin and
isospin degrees of freedom make Schrödinger equivalent to 270,336
differential equations in 33 variables.

Step 1: Variational Monte Carlo: Minimize

ET =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

with sophisticated trial variational wave function (schematic here):

|ΨT 〉 =

1 +
∑

i<j<k

Uijk

S∏
i<j

Ui,j

 |Φ〉 ,
where the U ’s represent two-and three-body correlations and |Φ〉 is
a Slater determinant.



NN GFMC: NCSM: RSM: Green’s Function Monte Carlo

Green’s Function Monte Carolo

Step 2: Green’s function Monte Carlo on variational wave function
Propoagate in “imaginary time” τ

|Ψ(τ)〉 = e−(H−E0)τ |ΨT 〉
|Ψ0〉 = lim

τ→∞
|Ψ(τ)〉

Excited states are damped out as e−(En−E0)τ . Next use

e−(H−E0)τ = [e−(H−E0)∆τ ]n

and define
G(R′,R) = 〈R′|e−(H−E0)∆τ |R〉

to get

〈Rn|Ψ(τ)〉 =
∫
G(Rn,Rn−1) · · ·G(R1,R0) dRn−1 · · · dR0 ,

a many-dimensional integral that requires Monte Carlo to evaluate.



NN GFMC: NCSM: RSM: Green’s Function Monte Carlo

Results

Not good unless vij supplemented by three-body interaction Vijk:

This and most other GFMC pictures from S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)

First term most important

Also a short range piece with 3 or 4 more independent
parameters, which are fit to about 20 nuclear levels
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Convergence
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Spectra
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30 October 2003

Updated version at, e.g,

http://www.fy.chalmers.se/conferences/inpc2004/Scientific/Programme/Friday/plenary/t4.pdf
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Spectra
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Updated version at, e.g,

http://www.fy.chalmers.se/conferences/inpc2004/Scientific/Programme/Friday/plenary/t4.pdf
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Spectra
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Densities and Correlations



NN GFMC: NCSM: RSM: Green’s Function Monte Carlo

Intrinsic Density!
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NN GFMC: NCSM: RSM: No-Core Shell Model

Another Approach: No-Core Shell Model

Start with the full Hamiltonian

H =
∑

i

p2
i

2m
+
∑
i<j

vij +
∑

i<j<k

Vijk

Add an oscillator potential that acts on center of mass

VCM =
1

2
mAΩ2

(
1

A

∑
i

~ri

)2

Together these give

HΩ =
∑

i

p2
i

2m
+
∑

i

mΩ2r2i
2

+
∑
i<j

vij +
∑

i<j<k

Vijk −
∑
i<j

mΩ2

A
(~ri − ~rj)

2

⇑ ⇑
Harmonic Oscillator “Residual” Part
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Basic Idea of Shell Model

HCM doesn’t affect intrinsic excitations. Ground state of HΩ is a
product of intrinsic ground state and center-of-mass oscillation.
Can get ground-state energy by subtraction ~Ω.
Eigenstates of “one-body” oscillator part are localized Slater
determinants, the simplest many-body states:

ψ(~r1 · · ·~rn) =

∣∣∣∣∣∣∣∣∣
φi(~r1) φj(~r1) · · · φl(~r1)
φi(~r2) φj(~r2) · · · φl(~r1)

...
...

...
...

φi(~rn) φj(~rn) · · · φl(~rn)

∣∣∣∣∣∣∣∣∣
−→ a†ia

†
j · · · a

†
l |0〉

in second quantization. They make a convenient basis for
diagonalization of HΩ (the oscillator potential makes them
particularly convenient). To get a complete set just put distribute
the A particles, one in each oscillator state, in all possible ways.
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Truncating the Model Space

Can’t include all oscillator levels. Results in a division of Hilbert
space for A-body system into P space, which is treated, and Q
space, which is not. When constructing Hamiltonian want:

Heff

HΩ

P

Q

Q

P

As a result can’t use real
Hamiltonian. Want to find Heff s.t.

HΩ|Ψi〉 = Ei|Ψi〉
HeffP |Ψi〉 = EiP |Ψi〉

where the operator P projects wave
functions onto the P space, and
i = 1, . . . , dim(P ).



NN GFMC: NCSM: RSM: No-Core Shell Model

Finding the Effective Hamiltonian

Here’s the simplest way. Noting that |Ψi〉 = P |Ψi〉+Q|Ψi〉 and
that P 2 = P , Q2 = Q, and letting H = HΩ:

PH|Ψi〉 = EiP |Ψi〉 = PHP |Ψi〉+ PHQ|Ψi〉 (1)

QH|Ψi〉 = EiQ|Ψi〉 = QHP |Ψi〉+QHQ|Ψi〉 (2)

Use (2) to solve for Q|Ψi〉 in terms of P |Ψi〉:

Q|Ψi〉 =
1

Ei −QH
QHP |Ψi〉

and plug into (1):

EiP |Ψi〉 =

[
PHP + PH

1

Ei −QH
QHP

]
P |Ψi〉

so

Heff = PHP + PH
1

Ei −QH
QHP



NN GFMC: NCSM: RSM: No-Core Shell Model

Finding the Effective Hamiltonian

Heff = PHP + PH 1
Ei−QHQHP is the “Bloch-Horowitz”

equation. Heff is energy-dependent, that is it depends on the
eivenvalue of the state you’re considering, but there are techniques
(which, luckily for you, I won’t go into) for obtaining an Heff that
is not.



NN GFMC: NCSM: RSM: No-Core Shell Model

The No-Core Approach

1 Diagaonlize T + vij for two particles in a very large space
(levels up to ≈ 50− 100~Ω so that solutions are essentially
exact).

2 Construct two-body Heff (which will look something like
Vlow k) for smaller space (≈ 20− 30~Ω) and use it together
with Vijk for three-body three-body system (3H, 3He).
Assumption: induced three-body interactions in a space this
size are negligible.

3 Use result to construct new Heff (which is now three-body) in
even smaller space (≈ 10− 20~Ω) and solve diagonalize
four-particle system.

...
(though you usually assume a three-body Heff is enough).



NN GFMC: NCSM: RSM: No-Core Shell Model

Results

Convergence rate with number of levels depends on the strength Ω
of the oscillator potential.

From E. Ormand, http://www.phy.ornl.gov/npss03/ormand2.ppt



NN GFMC: NCSM: RSM: No-Core Shell Model

Results

From E. Ormand, http://www.phy.ornl.gov/npss03/ormand2.ppt
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Not So Good With All Observables. . .

Harmonic oscillator potential makes asymptotics a bit unrealistic in
weakly bound nuclei.

Wilfried Nörtershäuser et al.

Poster 36 / Monday Two-Photon Lithium Spectroscopy
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NN GFMC: NCSM: RSM: Regular Shell Model

The Regular (Cum Core) Shell Model

Core is inert; particles can’t
move out.

Particles outside core confined
to limited set of valence shells.

Problem of constructing an
effective interaction is
complicated by the core.
Bootstrapping doesn’t work any
more. Only half-way decent
approach is perturbative
expansion of Bloch-Horowitz
equation, which is not always
convergent. Some
phenomenolgy (fitting) is
therefore essential.

Example: 20Ne

core

valence

0s

1p

0f 1p

0s 1d
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What the Shell Model Can Handle

From W. Nazarewicz, http://www-highspin.phys.utk.edu/˜witek/

And the problem of constructing an effective interaction gets
harder the larger the valence space.
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Level of Accuracy (When Good)

48Ca 48Sc

This slide and next from A. Poves, J. Phys. G: Nucl. Part. Phys. 25 (1999) 589 597.
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Level of Accuracy (When Good)

48V
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Next. . .

What To Do in Heavier Nuclei
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