

Reactor & Accelerator v

Thanks to Bob McKeown for many of the slides

Outline

- Reactor Neutrinos
 The neutrinos
 Past experiments
 What we know and what we want to learn
- Accelerator Neutrinos
 - The neutrinos
 - Past experiments
 - What we know and what we want to learn

Neutrino Oscillation Studies with Nuclear Reactors

- v_e from n-rich fission products
- detection via inverse
 beta decay (v_e+p→e⁺+n)
- Measure flux and energy spectrum
- Improve detectors, reduce background
- Variety of distances L= 10m-250km

Detection Signal

Coincidence signal: detect

- Prompt: e^+ annihilation $\rightarrow E_v = E_{prompt} + \overline{E_n} + 0.8 \text{ MeV}$
- Delayed: n capture 180 μ s capture time

June 2005

are not detected

June 2005

on-line computers

esh air generators

liquid scintillator purification

water purification

1000 ton liquid scintillator detector

Ratio of Measured and Expected $\overline{\nu}_e$ Flux from Reactor Neutrino Experiments

Measurement of Energy Spectrum

Steve Elliott, NPSS 2005

New Reactor Proposals

Daya Bay, China

• ~1.5 km

Chooz, France

Steve Elliott, NPSS 2005

- ~1.5 km baseline
- Deeper/bigger
- Near/Far

June 2005

Braidwood, II

horizontal cylinder

Steve Elliott, I

spherical

Oscillation Formulae for Long-Baseline Neutrinos

$$P(\nu_{\mu} \to \nu_{e}) = 4(s_{23}^{2}s_{13}^{2}c_{13}^{2} + J_{CP}\sin\Delta_{21})\sin^{2}\frac{\Delta_{31}}{2} + 2(s_{12}s_{23}s_{13}c_{12}c_{23}c_{13}^{2}\cos\delta - s_{12}^{2}s_{23}^{2}s_{13}^{2}c_{13}^{2})\sin\Delta_{31}\sin\Delta_{21}$$
(1)
+4($s_{12}^{2}c_{12}^{2}c_{23}^{2}c_{13}^{2} + s_{12}^{4}s_{23}^{2}s_{13}^{2}c_{13}^{2} - 2s_{12}^{3}s_{23}s_{13}c_{12}c_{23}c_{13}^{2}\cos\delta - J_{CP}\sin\Delta_{31})\sin^{2}\frac{\Delta_{21}}{2} + 8(s_{12}s_{23}s_{13}c_{12}c_{23}c_{13}^{2}\cos\delta - s_{12}^{2}s_{23}^{2}s_{13}^{2}c_{13}^{2})\sin^{2}\frac{\Delta_{31}}{2}\sin^{2}\frac{\Delta_{21}}{2}$

$$\Delta_{ij} \equiv \Delta m_{ij}^2 L/2E_{\nu}$$

For anti-neutrinos, the J_{cp} terms change sign.

Long Baseline Physics Goals

- Definitive observation of oscillatory behavior in v_{μ} disappearance mode and precise determination of δm_{23}^2 and θ_{23} .
- Detection of oscillation $v_{\mu} v_e$ in appearance mode and measurement of θ_{13} .
- Observe matter effects, hence sign of δm_{23}^2 .
- Measure δ_{cp}

CP violation and matter effects

T₂K

Phase I 0.75 MW +SK Phase II 4 MW + HyperK

June 2005

1 Mton (fiducial) volume: Total Length 400m (8 Compartments)

NO_VA

Use the NUMI beam line from FermiLab. Far detector uses alternate vertical planes of active scintillator with passive wood absorber.

Mass (Nominal)	50,000 metric tons
Width	96 feet
Height	48 feet
Length (nominal)	562.5 feet
Number of Layers	750
Mass of Wood Particleboard (Nomi-	42,000 metric tons
nal)	
Mass of Scintillator Extrusions	1,800 metric tons
Mass of Liquid Scintillator	6,900 metric tons

Table 7.1: Far Detector Parameters.

0.43E Off-Axis Beam E_{ν}

- For pions decaying in flight, most neutrinos are forward directed
- Neutrino energy is proportional to E_{π}
- Neutrino energy flattens with angle, however. Allowing one to "choose" an energy by choosing the angle.

Far Detector

810 km from target 10-14 km off axis

LONG baseline 2500-3000 km

The LSND Puzzle and MiniBOONE

The Evidence for Neutrino Oscillations

Requires a 3rd δm^2

MiniBooNE - A Definitive Test of the LSND Evidence for v Oscillations

Steve Elliott, NPSS 2005

Typical Muon-Neutrino Event

Typical Michel Electron Event

Resources

- Bob Mckeown APS April 2005 (Tampa)
- APS neutrino study on reactors and long baseline experiments.
- BNL, T2K and NOvA Letters of Intent
- Bill Louis Talks