A Precision Measurement of the Neutral Pion Lifetime via the Primakoff Effect

> Jefferson Lab Experiment E99-014 PrimEx Collaboration

Eric R. I. Clinton Rory Miskimen, PhD., Advisor

Given at NNPSS, June 15, 2005

The goal of the PrimEx Collaboration

- Make a high precision measurement of the π_0 to $\gamma\gamma$ decay rate dominated by the axial anomaly.
- This will be done using the Primakoff Effect, photopion production in the Coulomb field of the nucleus.
- Using the tagged photon facility in Hall B, a state of the art Hybrid Calorimeter, and well understood nuclear targets, the collaboration hopes to measure the Primakoff cross section to 1.5% or better.

The Chiral Anomaly

What is the physics motivation?

In the Chiral limit where the u and d quark masses vanish, we can exactly compute the decay amplitude.

$$A_{\gamma\gamma} = \alpha N_c / (3\pi f_\pi)$$

And we know the decay width of the π_0 to $\gamma\gamma$.

 $\Gamma_{\rm CL} = m_{\pi}^{3} |A_{\gamma\gamma}|^{2} / (64\pi) = 7.725 + 0.044 \, {\rm eV}$

More physics motivation

Real world quark masses are not 0 MeV

- Mass of u,d quarks on order of 5-7 MeV.
- Adler and Bardeen
 - Non-renormalization theorem gives quark mass correction.
 - The π^o mixing with η and η' -- 2-3% increase in the decay width.
- Smaller corrections (~ 0.001)
 - Saturation of the chiral anomaly by heavier mesons.

Thus, $\Gamma(\pi^{\circ} \text{ to } \gamma \gamma)$ is the most accurate prediction in QCD, depending only on the number of colors.

Recent Theory Developments

Joity, Bernstein, Donoghue, and Holstein
 Calculated NLO corrections to π⁰ width.

■ Result: $\Gamma_{\text{NLO}} = 8.10 \pm 0.081 \text{ eV}$ $\Gamma_{\text{CL}} = 7.725 + 0.044 \text{eV}$ $\Gamma_{\text{PDG}} = 7.84 \pm 0.556 \text{eV}$

Mousaallam et. al. have a very similar result.

Other measurements of the π_o decay.

-There are three reactions that allow us to conveniently measure the π° decay width.

"Direct measurement" through time of flight data

γγ collisions

The Primakoff Effect.

The Primakoff Effect

The Primakoff Effect is photopion production in the Coulomb field of a high Z nucleus.

Previous Primakoff Experiments

Browman et al.

- $\Gamma = 8.02 \pm 0.42 eV$
 - (no luminousity or detector efficiency uncertainties included).
- η decay widths measured using a similar set-up and analysis yielded questionable results.

DESY

1.0 GeV beam---- Γ = 9.02 ± .95 eV
1.5-2.0 GeV beam----Γ = 11.7 ± 1.2 eV.

Tomsk

■ 1.1 GeV beam---- Γ = 7.32 ± 0.5 eV.

PrimEx at Jefferson Lab

Tagged Photon Facility at JLab
 Increase precision and get cleaner kinematics.

The invariant pion mass will be deduced by detecting the neutral pion decay γ 's.

Good neutral pion detector

- Identify nuclear coherent and multi-photon background contributions
- Provide good energy and angular resolution.

PrimEx, continued

- The Primakoff cross section for unpolarized photons is d³σ_π/dΩ = (Γ_{γγ}8αZ²β³E⁴ | F_{em}(Q) |²/m³Q⁴)sin²θ_π
 Strong maximum in the Primakoff CS at θ ~ m_π²/(2E_π²)
 Falls off rapidly at higher angles.
 That's not the whole story
 - Nuclear coherent and incoherent processes and a cross term between NC and Primakoff effect contribute to the cross section.

Error budget

Statistical	0.4%
Target Thickness	0.7%
Photon Flux	1.0%
\square π^{o} detector acceptance and misalignment	0.4%
Background subtraction	0.2%
Beam energy	0.2%
Distorted form factor calculation errors 0.3%	

Total Error 1.4%

Photon Tagger

The Hybrid Calorimeter

 HyCal is a highly segmented array of lead tungstate and lead glass crystals

- 7.5 meters downstream of the targets.
- The interior array of crystals
 - 1152 lead tungstate modules, each 2.05x2.05.18 cm³, 20 Xo, and 2.0 cm Moliere radius.
- The outer array
 - 576 lead glass modules, each $3.84 \times 3.84.45 \text{ cm}^3$ and 17 Xo.

 The small size of the interior detectors means very fine angular resolution (better than 0.02°) and energy resolution (~3.5 Mev).

Final Thoughts

The PrimEx took date from September 2004 to November 2004. ■ We see lots of pi-zeros. Good statistics on Carbon, fair statistics on Lead. Preliminary analysis, calibration, and book-keeping stage. Then, about 1.5 years from now, I graduate. ■ I'm crossing my fingers...