Molecular Dynamics Simulations of Non-uniform Dense Matter and Neutrino Interactions in Supernovae

Liliana Caballero With Pf. Horowitz

Indiana University

NNPSS June/13/2005

X-Ray image of Crab Nebula Pulsar Credit: NASA/CXC/ASU/J. Hester et al.)

## Outline

- Introduction: Supernova and Neutron Stars
- Ion Response
  - Neutrino-Nucleus scattering
  - Model
  - Simulation Results
- Future Work

## Supernova Neutrinos

**Collapse of a Massive Star Gravitational Force vs. Nuclear Fusion**  Iron Core -> energy barrier->collapse Most of the energy is lost by neutrino emission: p+e ->  $n+v_e$  Density increment->Strong Force & Fermi **Degeneracy->Outward Pressure** Neutron Star

#### A NEUTRON STAR: SURFACE and INTERIOR



Image taken from Dany Pierre Page, Neutron Star (Theory) Group at UNAM

## ρ~10<sup>12</sup> g/cm<sup>3</sup>

Medium= Plasma Electrons and Nuclei
Neutrino Trapping in Supernova

Neutrino-Nucleus elastic scattering
Ion, Electron Screening have important effect

Ion Response

## Ion Response

 Linear Response -> Neutrino-Nucleus Elastic Cross Section:

$$\frac{d\sigma}{d\Omega dE} = S(\vec{q},\omega) \frac{d\sigma}{d\Omega dE}\Big|_{Free}$$

Correlation Function g(r)
Static Structure Factor S(q)
Dynamic Structure Factor S(q,w)

## Correlation Function g(r)

# Probability of finding another ion a distance r from a given ion.



## **Static Structure Factor**

$$S(\vec{q}) = 1 + \rho \int d^3 r \left( g(\vec{r}) - 1 \right) \exp(i\vec{q} \cdot \vec{r})$$

$$S(\vec{q}) = \frac{1}{N} \left\langle \left\langle \Psi_0 \left| \hat{\rho}^+(\vec{q}) \hat{\rho}(\vec{q}) \right| \Psi_0 \right\rangle - \left| \left\langle \Psi_0 \left| \hat{\rho}(\vec{q}) \right| \Psi_0 \right\rangle \right|^2 \right\rangle$$

Charge Density

$$\rho(\vec{q}) = \sum_{i=1}^{N} \exp(i\vec{q} \cdot \vec{r}_i)$$

**Ground State** 



## Model

Classical Approximation



Ions interact via screened Coulomb potential

$$V(r_{ij}) = \frac{Z^2 e^2}{4\pi r_{ij}} \exp\left(-\frac{r_{ij}}{\lambda_e}\right)$$

 $\lambda e$  electron screening

$$\lambda_e = \frac{\pi}{ek_F}, \alpha = \frac{e^2}{4\pi\hbar c}$$

r<sub>ii</sub> distance between lons



### Correlation Function N=1000 λe=10 fm L=382 fm



#### Static Structure Factor N=1000 λe=10 fm L=382 fm



## **Dynamic Response**

#### **Dynamic Structure Factor**

$$S(\vec{q}, \omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(i\omega t) S(\vec{q}, t) dt$$
$$S(\vec{q}, t) = \frac{1}{N} \left\{ \left\langle \rho(\vec{q}, t) \rho(-\vec{q}, 0) \right\rangle - \left\langle \rho(\vec{q}, t) \right\rangle \left\langle \rho(-\vec{q}, 0) \right\rangle \right\}$$
$$\rho(\vec{q}, t) = \sum_{i=1}^{N} \exp(i\vec{q} \cdot \vec{r}_{i}(t))$$
$$\left\langle \rho(\vec{q}, t) \rho(-\vec{q}, 0) \right\rangle = \frac{1}{\Delta t_{1}} \int_{0}^{\Delta t_{1}} \rho(\vec{q}, t_{1} + t) \rho(-\vec{q}, t_{1}) dt_{1}$$

## **Molecular Dynamics Algorithm**

#### • Verlet Algorithm

$$\vec{r}(t + \Delta t) = \vec{r}(t) + \vec{v}(t)\Delta t + \frac{1}{2}\vec{a}(t)\Delta t^{2}$$
$$\vec{v}(t + \Delta t/2) = \vec{v}(t) + \frac{1}{2}\vec{a}(t)\Delta t$$
$$\vec{a}(t + \Delta t) = -\frac{1}{m}\nabla V(\vec{r}(t + \Delta t))$$
$$\vec{v}(t + \Delta t) = \vec{v}(t + \Delta t/2) + \frac{1}{2}\vec{a}(t + \Delta t)\Delta t$$

## **Molecular Dynamic Simulation**

• T= 1 MeV N ions • <sup>56</sup>Fe •  $\rho = 1 \times 10^{12} \, \text{g/cc}$ **Periodic Boundary Condition** •  $r_i(t)$ , i=1,N

#### Dynamic Structure Factor N=500 Ae=10 fm L=304 fm



## Peaks

| q (fm-1)                                                                           | ω*10 <sup>-4</sup> (fm-1) | $\Omega_{p}^{*}10^{-4}(\text{fm-1})$ |
|------------------------------------------------------------------------------------|---------------------------|--------------------------------------|
| q <sub>0</sub> =2π/L                                                               | 3.3                       | 4.2                                  |
| q <sub>0</sub> * 2 <sup>1/2</sup>                                                  | 4.5                       | 5.7                                  |
| q <sub>0</sub> *3 <sup>1/2</sup>                                                   | 5.1                       | 6.9                                  |
| q <sub>0</sub> *4 <sup>1/2</sup>                                                   | 6                         | 7.8                                  |
| $\Omega_p^2 = 4\pi\hbar c\alpha Z^2\frac{\rho_i}{M}\frac{q^2}{q^2+\lambda_e^{-2}}$ |                           |                                      |

## Future Work

 Ion-Ion Screening model break down at large density
 N=100000 nucleons MDGRAPE
 Dynamical Page Page

Dynamical Response Pasta