³He(α , γ)⁷Be Cross Section Measurement-Project Overview Prof. K. Snover **Prof. D. Storm M.Bacrania** K.P. Michnicki University of **J.D.Lowrey** Washington **B.Abel G.Harper** NPL-CENPA **R.Seymour Cristina Bordeanu E.Swanson** D. Will A. Batchelor Y.Kharoti

D.Nikic

Reaction energy in the Sun

FIGURE 4.6. The dominant energy-dependent functions are shown for nuclear reactions between charged particles. While both the energy distribution function (Maxwell-Boltzmann) and the quantum mechanical tunneling function through the Coulomb barrier are small for the overlap region, the convolution of the two functions results in a peak (the Gamow peak) near the energy E_0 , giving a sufficiently high probability to allow a significant number of reactions to occur. The energy of the Gamow peak is generally much larger than kT.

Statement of the Problem Determine S_{34} (0) with an accuracy <5%

Why measure $S_{34}(0)$?

SSM : $S_{34}(0)=0.53(5)$ keVb¹ SBBN: $S_{34}(0)=0.54(9)$ keVb² R matrix: =0.51(4)keVb³

1- E.Adelberger RevModPhys70,1265,1998
 2-C.Angulo NPA656,3,1999
 3-P.Descouvermont DNDT 88,203,2004

Measuring ${}^{3}\text{He}(\alpha,\gamma)^{7}\text{Be}$

Expected ³He(
$$\alpha,\gamma$$
)⁷Be Yield
Yield per Incident Ion for ³He(α,γ)⁷Be reaction can
be calculated:

$$\frac{Yield}{N_i} = N_i \int \sigma(E) dE = N_i \int \frac{\sigma(E) dx}{dE}$$
For 200 Torr, 3cm long gas cell, $E_{\alpha LAB}$ =2.9MeV, $\sigma(E_{\alpha CM})$ =2.4µb:

$$\frac{Yield}{N_i} = \frac{{}^7Be}{N_a} = 9.6 \times 10^{-11} \frac{atoms}{ion}$$

For I_{α} =0.5µA, in 1 hour we produce 1*10⁶ ⁷Be atoms

Materials

- Gas Cell
 - window : Ni, Ni&Cu, Ni+Au gas : ³He or ⁴He stopper : Al, Au, Pt, Cu, Nb beam : ⁴He or ³He
- Impurities may affect results ! ⁴He⁺: D₂⁺, DH₂⁺ from TIS ⁶Li(d,n)⁷Be ¹⁰B(p,α)⁷Be

Procedure

- If contaminants in the beam (protons or deuterons), some extra ⁷Be atoms may be formed, which add to the ⁷Be atoms created by target bombardment.
- Cross sections for the main reactions:
 - 2.2µb 3 He(4 He, γ) 7 Be for E_{α}=3.0MeV
- 100 mb ${}^{6}\text{Li}(d,n){}^{7}\text{Be}$ for $E_{d}=1.5\text{MeV}$
 - 50 mb ${}^{10}B(p,\alpha)^7Be$ for $E_p=0.75MeV$

PPM (mass) Contamination Calculations

- ⁶Li contamination from ⁶Li(p,γ)⁷Be
 - Au: 0.61
 - Co: 0.07
 - Cu: 0.13
 - Nb: 14.53
 - Ni: 2.47
 - Pt 1.85
 - Ta 21.16

- ¹⁰B contamination from ¹⁰B(p,α)⁷Be
 - Au 3.14
 - Co 0.13
 - Cu 0.06
 - Nb 16.76
 - Ni 6.41
 - Pt 0.66
 - Ta 10.84

Beam contamination – no foil stripper

γ-background from α-bombardment of the metal backings (BEAM ON)

C/Cu

Cu- OFHC first 2 runs- background substracted

Cu From these measurements, OFHC We learned that we have C build-up.

Smallest backscattering

Calculations were done using TRIM

⁷Be atoms on 1mm foil backscattering-TRIM calculations

MOTOR 1

COLIMATOR READING

MOTOR 2

COLIMATORS BODY GAS CELL GAS CELL CURREN READING

LN₂ COOLING

One side of the BIG picture

Energy transport through the target

- Energy loss & energy straggle through the Ni window for the α beam :SRIM & resonance experiment
- Energy loss & energy straggle through the gas target ³He

-for the α beam : SRIM & resonance experiment and

-for the ⁷Be atoms created : SRIM

Resonance gamma spectrum

³He atoms density of the gas along the beam path & Ni window thickness (and pin holes)

²⁴Mg+ α ->²⁸Si+ γ

24Mg + alpha for Gamma0, Gamma1, Sum

June 25 2004 after Correcting BIC connection

24Mg + alpha for Gamma0, Gamma1, Sum June 24 2004 after Correcting BIC connection

Thick target resonance curves

- Assume Gaussian, integrate over energy range throughout Mg target.
- Add background.
- Central energy is near mid-point of curve.
- Central energy is resonance energy plus energy loss

Gas cell

Shape of the peaks

- Doppler broadening
- Doppler shift
- Broadening due to the width of the cell

Reaction creates a difference in the peaks of the spectra

First approximation for γ_0 peak

Rough σ determination

- Net area of the γ_0 peak 7358 cts
- Beam charge evaluation 4.8*10¹⁶ atoms
- Solid angle evaluation & efficiency of the Ge detector 0.0049
- Gas thickness 1.97*10¹⁹ atoms/cm²
- σ_{γ0}=1.58µb
- σ_{γ429}=1.085µb
- $\sigma_t = 2.7 \mu b$ (2.4 μb from previous experiment)

⁷Be decay measurement

Next steps

- Add accuracy in geometrical positioning
- Double check for thicknesses of the Ni window and the gas target
- Check pressure measurement
- Check for Ge detectors efficiency
- Make the experiment for different energies and pressures