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Figure 1:  From QCD vacuum to heavy nuclei: the intellectual connection between the hadronic many-body 
problem  (quark-gluon description of a nucleon) and the nucleonic many-body problem (nucleus as a 
system of Z protons and N neutrons).  The bridges illustrate major physics challenges: the mechanism of 
quark confinement, the understanding of the bare nucleon-nucleon interaction in terms of the quark-gluon 
dynamics, and the understanding of the effective interactions in heavy nuclei in terms of the bare force. 
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Figure 2:  Top: the nuclear landscape - the territory of RIA physics.  The black squares represent the stable 
nuclei and the nuclei with half-lives comparable to or longer than the age of the Earth (4.5 billion years).  
These nuclei form the "valley of stability".  The yellow region indicates shorter lived nuclei that have been 
produced and studied in laboratories.  By adding either protons or neutrons one moves away from the 
valley of stability, finally reaching the drip lines where the nuclear binding ends because the forces between 
neutrons and protons are no longer strong enough to hold these particles together.  Many thousands of 
radioactive nuclei with very small or very large N/Z ratios are yet to be explored.  In the (N,Z) landscape, 
they form the terra incognita indicated in green.  The proton drip line is already relatively well delineated 
experimentally up to Z=83.  In contrast, the neutron drip line is considerably further from the valley of 
stability and harder to approach.  Except for the lightest nuclei where it has been reached experimentally, 
the neutron drip line has to be estimated on the basis of nuclear models - hence it is very uncertain due to 
the dramatic extrapolations involved.  The red vertical and horizontal lines show the magic numbers around 
the valley of stability.  The anticipated paths of astrophysical processes (r-process, purple line; rp-process, 
turquoise line) are shown.  Bottom: various theoretical approaches to the nuclear many-body problem.  For 
the lightest nuclei, ab initio calculations (Green’s Function Monte Carlo, no-core shell model) based on the 
bare nucleon-nucleon interaction, are possible.  Medium-mass nuclei can be treated by the large-scale shell 
model.  For heavy nuclei, the density functional theory (based on selfconsistent mean field) is the tool of 
choice.  By investigating the intersections between these theoretical strategies, one aims at nothing less than 
developing the unified description of the nucleus. 
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Figure 2:  Top: the nuclear landscape - the territory of RIA physics.  The black squares represent the stable 
nuclei and the nuclei with half-lives comparable to or longer than the age of the Earth (4.5 billion years).  
These nuclei form the "valley of stability".  The yellow region indicates shorter lived nuclei that have been 
produced and studied in laboratories.  By adding either protons or neutrons one moves away from the 
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model.  For heavy nuclei, the density functional theory (based on selfconsistent mean field) is the tool of 
choice.  By investigating the intersections between these theoretical strategies, one aims at nothing less than 
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Monte Carlo Calculations of Many-Body Systems

For smaller systems (finite or in a box with pbc’s)
=⇒ approximate energy and full many-body wave function

Variational, diffusion, path integral, Green’s function MC
All use the Metropolis algorithm: random walkers

Variational Monte Carlo (VMC): Estimate 〈E〉 =
∫

dR ρ(R) EL(R)

local energy EL(R) = HψT (R)
ψT (R) with trial wave function ψT (R)

probability distribution ρ(R) =
ψ2

T (R)∫
dRψ2

T (R)

accept step to R′ if p = ψ2
T (R′)/ψ2

T (R) ≥ 1,
else if p < 1 accept with probability p

minimize 〈E〉 or variance of EL(R) with respect to variational
parameters in ψT (R)

gives upper bound to ground state E

Requires very good trial wave function for reliable results
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DMC and GFMC exploit S–equation in imaginary time
=⇒ diffusion!

−~
∂

∂τ
Ψ(R, τ) = − ~2

2M
∇2

RΨ(R, τ) + V (R)Ψ(R, τ)

Use Metropolis to propagate to large τ =⇒ projects ground state

Ψ(R, τ) =

∫
dR′ G(R,R′, τ) Ψ(R′, τ)

Take many steps with small τ approximation to G
Generates “walker representation” of wave function (a set of Ri ’s)

=⇒ can only represent a positive density

Fermion sign problem for diffusion, path integral, GFMC
for fermions, even ground-state wavefunction changes sign
(anti-symmetric)
if trial function provides good representation of nodes, solve in
regions with nodal boundary conditions (“fixed node”)
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Monte Carlo (GFMC) Calculations of Light Nuclei
Carlson, Pandharipande, Pieper, Wiringa
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Chiral EFT: Systematic Many-Body Forces

Contribution of (n + 1)–body potential relative to n–body:

〈V(n+1)N〉
〈VnN〉

∼ O
( Q

Λχ

)2

Hierarchy of three-body forces:

2–pion 1–pion 0–pion Order

π
π π

O(Q0)

— — — O(Q1)

π
π π

O(Q2)

π π π
O(Q3)
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Table of the Nuclides

33

increased sensitivity.  These discoveries relate to nuclei dis-
persed over the entire nuclear chart (see Figure 2.11) and, as a
result, the data shed new light on many facets of nuclear
structure.  The following sections expand on some of these
discoveries and indicate how they point to the future.

Nuclei near stability:  Collective modes and phase transi-
tional behavior. Significant advances in understanding nuclei
lying along the valley of stability include, among other
insights, new information on vibrational modes and dynam-
ical symmetries.  Considering the fact that the frequency of
nuclear vibrational motion is comparable to that of single-
particle motion, the mere existence of collective vibrational
states in nuclei is remarkable.  The identification of multi-
phonon states is then of importance, since their existence
relates directly to this interplay of single-particle and collec-
tive degrees of freedom, and to the influence of the Pauli

principle on collective modes.  The search for such states has
recently been successfully expanded to include vibrational
modes with several phonons and with phonons of different
multipolarities.

New experimental studies with samarium isotopes have
shown that nuclei can exhibit behavior resembling that of
phase transitions found in other many-body systems.
These isotopes are transitional in that they are located on
the nuclear chart between spherical and deformed nuclei;
as a result, they display intense competition between dif-
ferent degrees of freedom (see “Nuclear Phases,” pages
34–35).  This work has inspired the development of analytic
predictions for critical-point nuclei.  Examples of such critical
points have now been identified empirically, and further study
of phase transitional behavior both near and far from stability
is an exciting ongoing challenge.

THE SCIENCE •  ATOMIC NUCLEI :  STRUCTURE AND STABILITY
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Figure 2.11. The nuclear landscape, defining the territory of nuclear physics research.  On this chart of the nuclides,
black squares represent stable nuclei and nuclei with half-lives comparable to or longer than the age of the Earth.
These nuclei define the “valley of stability.” By adding either protons or neutrons, one moves away from the valley of
stability, finally reaching the drip lines where nuclear binding forces are no longer strong enough to hold these nuclei
together. The dark yellow region shows the range of unstable nuclei that have been produced and studied in labora-
tories.  But many thousands of radioactive nuclei with very small or very large N/Z ratios have yet to be explored.  This
nuclear terra incognita is indicated in green.  The proton drip line is already relatively well delineated experimentally
up to Z = 83.  By contrast, the neutron drip line is considerably further from the valley of stability and harder to approach.
Except for the lightest nuclei, the neutron drip line can only be estimated on the basis of nuclear models.  The red vertical
and horizontal lines show the “magic numbers,” reflecting regions of high stability.  The anticipated paths of astro-
physical processes for nucleosynthesis (r-process, purple line; rp-process, turquoise line) are also shown.  The Rare
Isotope Accelerator (RIA) will enable studies of exotic radioactive nuclei far from the valley of stability, important for
both nuclear structure studies and nuclear astrophysics.
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Skyrme Hartree-Fock Energy Functionals

Skyrme energy density functional (for N = Z ):

E [ρ, τ, J] =
1

2M
τ +

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ

+
1

64
(9t1 − 5t2)(∇ρ)2 − 3

4
W0ρ∇ · J +

1
32

(t1 − t2)J2

where ρ(x) =
∑
α |φi(x)|2 and τ(x) =

∑
α |∇φi(x)|2 (and J)

Minimize E =
∫

dx E [ρ, τ, J] by varying the (normalized) φi ’s(
−∇ 1

2M∗(x)
∇+ U(x) +

3
4

W0∇ρ ·
1
i
∇× σ

)
φα(x) = εα φα(x)

where the effective mass M∗(x) is given by

1
2M∗(x)

=
1

2M
+

[
3

16
t1 +

5
16

t2

]
ρ(x)

Iterate until φi ’s and εα’s are self-consisent
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Questions and Criticisms of Skyrme HF

Typical [e.g., SkIII] model parameters (in units of MeV-fmn):
t0 = −1129 t1 = 395 t2 = −95 t3 = 14000 W0 = 120

These seem large; is there an expansion?
Where does ρ2+α come from?
Parameter Fitting [von Neumann via Fermi via Dyson]:

“With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.”

Skyrme HF is only mean-field; too simple to include correlations

Law of the Conservation of Difficulty [Prof. R. Baker]
“Difficulty in a solution to a problem is always conserved

regardless of the technique used in the solution.”

How do we improve the approach? Is pairing treated correctly?

How does Skyrme HF relate to NN (and NNN) forces?
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Problems with Extrapolations

Mass formulas and energy functionals do well where there is
data, but elsewhere . . .
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Figure 6: Predicted two-neutron separation energies for the even-even Sn isotopes using several 
microscopic models based on effective nucleon-nucleon interactions and obtained with phenomenological 
mass formulas (shown in the inset).  While calculations agree well in the region where experimental data 
are available, they diverge for neutron-rich isotopes with N>82.  It is seen that the position of the neutron 
drip line is uncertain.  Unknown nuclear deformations or as yet uncharacterized phenomena, such as the 
presence of neutron halos or neutron skins, make theoretical predictions highly uncertain.  Experiments for 
the Sn isotopes with N=80–100 will greatly narrow the choice of viable models.   
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Why Use EFT for Energy Functionals

Eliminating model dependences (no more “minimal” models!)
framework for building a “complete” functional
renormalization (you’re doing it in any case!)

Power counting: what to sum at each order in a well-defined
expansion

naturalness =⇒ estimates of truncation errors
robust empirical evidence from Skyrme and RMF functionals

Similar to conventional “phenomenological” approaches
but with a rigorous foundation (DFT from effective action)
extendable and can be connected to chiral EFT for NN and
few-body

New insight into analytic structure of functional
e.g., logs in low-density expansion in kFas from renormalization
group
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Density Functional Theory (DFT)

Hohenberg-Kohn: There exists
an energy functional Ev [n] . . .

Ev [n] = FHK [n] +

∫
d3x v(x)n(x)

FHK is universal (same for any
external v ) =⇒ H2 to DNA!

Useful if you can approximate
the energy functional

Kohn-Sham procedure similar
to nuclear “mean field”
calculations
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Density Functional Theory

Dominant application:
inhomogeneous electron
gas

Interacting point electrons
in static potential of atomic
nuclei

“Ab initio” calculations of
atoms, molecules,
crystals, surfaces
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Quotes From the DFT Literature

A Chemist’s Guide to DFT (Koch & Holthausen, 2000)

“To many, the success of DFT appeared somewhat miraculous, and
maybe even unjust and unjustified. Unjust in view of the easy
achievement of accuracy that was so hard to come by in the wave
function based methods. And unjustified it appeared to those who
doubted the soundness of the theoretical foundations. ”

Density Functional Theory (AJP, Argaman & Makov, 2000)

“It is important to stress that all practical applications of DFT rest on
essentially uncontrolled approximations, such as the LDA . . . ”

Meta-Generalized Gradient Approximation (Perdew et al., 1999)

“Some say that ‘there is no systematic way to construct density
functional approximations.’ But there are more or less systematic
ways, and the approach taken . . . here is one of the former.”
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Kohn-Sham DFT

VHO

=⇒
VKS

Interacting density with vHO ≡ Non-interacting density with vKS

Orbitals {φi(x)} in local potential vKS([n], x) [but no M∗(x)]

[−∇2/2m + vKS(x)]φi = εiφi =⇒ n(x) =
N∑

i=1

|φi(x)|2

find Kohn-Sham potential vKS(x) from δEv [n]/δn(x)
Solve self-consistently
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Thermodynamic Interpretation of DFT

Consider a system of spins Si

on a lattice with interaction g

The partition function has the
information about the energy,
magnetization of the system:

Z = Tr e−βg
∑

{i,j} Si Sj

The magnetization M is

M =
〈∑

i

Si

〉
=

1
Z

Tr

[(∑
i

Si

)
e−βg

∑
{i,j} Si Sj

]
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Add A Magnetic Probe Source H

The source probes configurations
near the ground state

Z[H] = e−βF [H] = Tr e−β(g
∑

{i,j} Si Sj−H
∑

i Si )

Variations of the source yield the
magnetization

M =
〈∑

i

Si

〉
H

= −∂F [H]

∂H

F [H] is the Helmholtz free energy.
Set H = 0 (or equal to a real
external source) at the end
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Legendre Transformation to Effective Action

Find H[M] by inverting

M =
〈∑

i

Si

〉
H

= −∂F [H]

∂H

Legendre transform to the Gibbs
free energy

Γ[M] = F [H] + H M

The ground-state magnetization
Mgs follows by minimizing Γ[M]:

H =
∂Γ[M]

∂M
−→ ∂Γ[M]

∂M

∣∣∣∣
Mgs

= 0
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DFT as Analogous Legendre Transformation

In analogy to the spin system, add source J(x) coupled to
density operator n̂(x) ≡ ψ†(x)ψ(x) to the partition function:

Z[J] = e−W [J] ∼ Tr e−β(Ĥ+J n̂) −→
∫
D[ψ†]D[ψ] e−

∫
[L+J ψ†ψ]

The density n(x) in the presence of J(x) is

n(x) ≡ 〈n̂(x)〉J =
δW [J]

δJ(x)

Invert to find J[n] and Legendre transform from J to n:

Γ[n] = −W [J] +

∫
J n with J(x) =

δΓ[n]

δn(x)
−→ δΓ[n]

δn(x)

∣∣∣∣
ngs(x)

= 0

=⇒ For static n(x), Γ[n] ∝ the DFT energy functional FHK !
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What can EFT do for DFT?

Effective action as a path integral =⇒ construct W [J],
order-by-order in EFT expansion

For dilute system, same diagrams as before

Inversion method: order-by-order inversion from W [J] to Γ[n]

E.g., J(x) = J0(x) + JLO(x) + JNLO(x) + . . .
Two conditions on J0:

n(x) =
δW0[J0]

δJ0(x)
and J0(x)|n=ngs

=
δΓinteracting[n]

δn(x)

∣∣∣∣
n=ngs

Interpretation: J0 is the external potential that yields for a
noninteracting system the exact density

This is the Kohn-Sham potential!
Two conditions on J0 =⇒ Self-consistency
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Kohn-Sham J0 According to the EFT Expansion
Simplifying with the local density approximation (LDA)

LO :

NLO : +

NNLO : +

+ +

+

J0(x) =

[

− (ν − 1)

ν

4πa0

M
ρ(x)

− c1
a2

0

2M
[ρ(x)]4/3

− c2 a3
0[ρ(x)]5/3

− c3 a2
0 r0[ρ(x)]5/3

− c4 a3
p[ρ(x)]5/3 + · · ·

]
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Dilute Fermi Gas in a Harmonic Trap

Iteration procedure:

1. Guess an initial density profile n(r) (e.g., Thomas-Fermi)

2. Evaluate local single-particle potential vKS(r) ≡ v(r)− J0(r)

3. Solve for lowest N states (including degeneracies): {ψα, εα}

[
−∇

2

2M
+ vKS(r)

]
ψα(x) = εαψα(x)

4. Compute a new density n(r) =
∑N

α=1 |ψα(x)|2
other observables are functionals of {ψα, εα}

5. Repeat 2.–4. until changes are small (“self-consistent”)

Looks like a Skyrme Hartree-Fock calculation!
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Dilute Fermi Gas in a Harmonic Trap
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Check Out An Example

0 1 2 3 4 5 6
r/b

0

1

2

3

4
ρ(

r/
b)

C0 = 0 (noninteracting)

Dilute Fermi Gas in Harmonic Trap
NF=7, A=240, ν=2, a0=-0.160

   E/A  <kFas>
  6.750  -0.524
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Power Counting Terms in Energy Functionals

Scale contributions according to average density or 〈kF〉

LO NLO NNLO
0.01

0.1

1

en
er

gy
/p

ar
tic

le

ν=4, as=-0.1, A=140
ν=4, as=+0.1, A=140
ν=2, as=+.16, A=330

Accurate estimates =⇒ truncation errors understood
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Kohn-Luttinger-Ward Theorem (1960)

T → 0 diagrammatic expansion of Ω(µ,V ,T ) in external v(x)
=⇒ same as F (N,V ,T ≡ 0) with µ0 and no anomalous diagrams

Ω(µ, V, T ) = Ω0(µ) + + + + · · ·

with G0(µ, T )

T→0−→ F (N, V, T = 0) = E0(N) + + + · · ·

with G0(µ0)

Uniform Fermi system with no external potential (degeneracy ν):

µ0(N) = (6π2N/νV )2/3 ≡ k2
F/2M ≡ ε0

F

If symmetry of non-interacting and interacting systems agree
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Kohn-Luttinger Inversion Method [F & W, sec. 30]

Find F (N) = Ω(µ) + µN with µ(N) from N(µ) = −(∂Ω/∂µ)TV

expand about non-interacting system (subscripts label expansion):

Ω(µ) = Ω0(µ) + Ω1(µ) + Ω2(µ) + · · ·
µ = µ0 + µ1 + µ2 + · · ·

F (N) = F0(N) + F1(N) + F2(N) + · · ·

invert N = −(∂Ω(µ)/∂µ)TV order-by-order in expansion
N appears in 0th order only: N = −[∂Ω0/∂µ)]µ=µ0 =⇒ µ0(N)
first order has two terms, which lets us solve for µ1:

0 = [∂Ω1/∂µ]µ=µ0 + µ1[∂
2Ω0/∂µ

2]µ=µ0 =⇒ µ1 = − [∂Ω1/∂µ]µ=µ0

[∂2Ω0/∂µ2]µ=µ0

Same pattern to all orders: µi is determined by functions of µ0
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Apply this inversion to F = Ω + µN:

F (N) = Ω0(µ0) + µ0N︸ ︷︷ ︸
F0

+ Ω1(µ0) + µ1N + µ1

[
∂Ω0

∂µ

]
µ=µ0︸ ︷︷ ︸

F1

+ Ω2(µ0) + µ2N + µ2

[
∂Ω0

∂µ

]
µ=µ0

+ µ1

[
∂Ω1

∂µ

]
µ=µ0

+
1
2
µ2

1

[
∂2Ω0

∂µ2

]
µ=µ0︸ ︷︷ ︸

F2

+ · · ·

µi always cancels from Fi for i ≥ 1:

F (N) = F0(N) + Ω1(µ0)︸ ︷︷ ︸
F1

+Ω2(µ0)−
1
2

[∂Ω1/∂µ]2µ=µ0

[∂2Ω0/∂µ2]µ=µ0︸ ︷︷ ︸
F2

+ · · ·

︸ ︷︷ ︸
F1

+ + + + · · ·

︸ ︷︷ ︸
F2
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Generalizing the KLW Inversion Approach

Three generalizations =⇒ Kohn-Sham DFT, other sources,
and pairing

1. µN + J(x)ρ(x) with J(x) = δF [ρ]/δρ(x) → 0 in ground state

2. Add a source coupled to the kinetic energy density

+ Jτ (x)τ(x) where τ(x) ≡ 〈∇ψ† · ∇ψ〉

=⇒ M∗(x) in the Kohn-Sham equation (cf. Skyrme)

[
−∇

2

2M
+ vKS(x)

]
ψα = εαψα =⇒

[
−∇ 1

M∗(x)
∇+ vKS(x)

]
ψα = εαψα

3. Add a source coupled to the non-conserved pair density
=⇒ e.g., j〈ψ†↑ψ

†
↓ + ψ↓ψ↑〉 =⇒ set j to zero in ground state

Same inversion method, but use [j]gs = j0 + j1 + j2 + · · · = 0
=⇒ solve for j0 iteratively: from [j0]old find [j0]new = −j1− j2 + · · ·

Dick Furnstahl Fermion Many-Body Systems III



Outline Intro DFT Future Intro Thermo DFT/EFT Results KLW Tau Pairing

Generalizing the KLW Inversion Approach

Three generalizations =⇒ Kohn-Sham DFT, other sources,
and pairing

1. µN + J(x)ρ(x) with J(x) = δF [ρ]/δρ(x) → 0 in ground state
2. Add a source coupled to the kinetic energy density

+ Jτ (x)τ(x) where τ(x) ≡ 〈∇ψ† · ∇ψ〉

=⇒ M∗(x) in the Kohn-Sham equation (cf. Skyrme)

[
−∇

2

2M
+ vKS(x)

]
ψα = εαψα =⇒

[
−∇ 1

M∗(x)
∇+ vKS(x)

]
ψα = εαψα

3. Add a source coupled to the non-conserved pair density
=⇒ e.g., j〈ψ†↑ψ

†
↓ + ψ↓ψ↑〉 =⇒ set j to zero in ground state

Same inversion method, but use [j]gs = j0 + j1 + j2 + · · · = 0
=⇒ solve for j0 iteratively: from [j0]old find [j0]new = −j1− j2 + · · ·

Dick Furnstahl Fermion Many-Body Systems III



Outline Intro DFT Future Intro Thermo DFT/EFT Results KLW Tau Pairing

Generalizing the KLW Inversion Approach

Three generalizations =⇒ Kohn-Sham DFT, other sources,
and pairing

1. µN + J(x)ρ(x) with J(x) = δF [ρ]/δρ(x) → 0 in ground state
2. Add a source coupled to the kinetic energy density

+ Jτ (x)τ(x) where τ(x) ≡ 〈∇ψ† · ∇ψ〉

=⇒ M∗(x) in the Kohn-Sham equation (cf. Skyrme)

[
−∇

2

2M
+ vKS(x)

]
ψα = εαψα =⇒

[
−∇ 1

M∗(x)
∇+ vKS(x)

]
ψα = εαψα

3. Add a source coupled to the non-conserved pair density
=⇒ e.g., j〈ψ†↑ψ

†
↓ + ψ↓ψ↑〉 =⇒ set j to zero in ground state

Same inversion method, but use [j]gs = j0 + j1 + j2 + · · · = 0
=⇒ solve for j0 iteratively: from [j0]old find [j0]new = −j1− j2 + · · ·

Dick Furnstahl Fermion Many-Body Systems III



Outline Intro DFT Future Intro Thermo DFT/EFT Results KLW Tau Pairing

Generalizing the KLW Inversion Approach

Three generalizations =⇒ Kohn-Sham DFT, other sources,
and pairing

1. µN + J(x)ρ(x) with J(x) = δF [ρ]/δρ(x) → 0 in ground state
2. Add a source coupled to the kinetic energy density

+ Jτ (x)τ(x) where τ(x) ≡ 〈∇ψ† · ∇ψ〉

=⇒ M∗(x) in the Kohn-Sham equation (cf. Skyrme)

[
−∇

2

2M
+ vKS(x)

]
ψα = εαψα =⇒

[
−∇ 1

M∗(x)
∇+ vKS(x)

]
ψα = εαψα

3. Add a source coupled to the non-conserved pair density
=⇒ e.g., j〈ψ†↑ψ

†
↓ + ψ↓ψ↑〉 =⇒ set j to zero in ground state

Same inversion method, but use [j]gs = j0 + j1 + j2 + · · · = 0
=⇒ solve for j0 iteratively: from [j0]old find [j0]new = −j1− j2 + · · ·

Dick Furnstahl Fermion Many-Body Systems III



Outline Intro DFT Future Intro Thermo DFT/EFT Results KLW Tau Pairing

Warm-Up Problem: Hartree-Fock Diagrams Only

Consider bowtie diagram from vertices with derivatives:

Left = . . .+
C2

16

[
(ψψ)†(ψ

↔
∇2ψ) + h.c.

]
+

C′
2

8
(ψ

↔
∇ψ)† · (ψ

↔
∇ψ) + . . .

+

Energy density in Kohn-Sham LDA (ν = 2):

Eint = . . .+
C2

8

[3
5

(
6π2

ν

)2/3

ρ8/3
]

+
3C′

2

8

[3
5

(
6π2

ν

)2/3

ρ8/3
]

+ . . .

Energy density in Kohn-Sham with τ (ν = 2):

Eint = . . .+
C2

8

[
ρτ +

3
4

(∇ρ)2]+
3C′

2

8

[
ρτ − 1

4
(∇ρ)2]+ . . .
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Warm-Up Problem: Hartree-Fock Diagrams Only
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Pairing in DFT/EFT from Effective Action

Natural framework for spontaneous symmetry breaking
e.g., test for zero-field magnetization M in a spin system
introduce an external field H to break rotational symmetry
Legendre transform Helmholtz free energy F (H):

invert M = −∂F (H)/∂H =⇒ G[M] = F [H(M)] + MH(M)

since H = ∂G/∂M, minimize G to find ground state
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Pairing in DFT/EFT from Effective Action

With pairing, the broken symmetry is a U(1) [phase] symmetry
standard treatment in condensed matter uses auxiliary

pairing field ∆(x)
to leading order in the loop expansion (mean field)

=⇒ BCS approximation

Here: Combine the EFT expansion and the inversion method
external current j coupled to pair density breaks symmetry
natural generalization of Kohn-Sham DFT
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Generalizing Effective Action to Include Pairing

Generating functional with sources J, j coupled to densities:

Z [J, j] = e−W [J,j] =

∫
D(ψ†ψ) e−

∫
d4x [L+ J(x)ψ†αψα + j(x)(ψ†↑ψ

†
↓+ψ↓ψ↑)]

Densities found by functional derivatives wrt J, j :

ρ(x) ≡ 〈ψ†(x)ψ(x)〉J,j =
δW [J, j]
δJ(x)

∣∣∣∣
j

φ(x) ≡ 〈ψ†↑(x)ψ†↓(x) + ψ↓(x)ψ↑(x)〉J,j =
δW [J, j]
δj(x)

∣∣∣∣
J

Effective action Γ[ρ, φ] by functional Legendre transformation:

Γ[ρ, φ] = W [J, j]−
∫

d4x J(x)ρ(x)−
∫

d4x j(x)φ(x)
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Γ[ρ, φ] ∝ ground-state energy functional E [ρ, φ]

at finite temperature, the proportionality constant is β

The sources are given by functional derivatives wrt ρ and φ

δE [ρ, φ]

δρ(x)
= J(x) and

δE [ρ, φ]

δφ(x)
= j(x)

but the sources are zero in the ground state
=⇒ determine ground-state ρ(x) and φ(x) by stationarity:

δE [ρ, φ]

δρ(x)

∣∣∣∣
ρ=ρgs,φ=φgs

=
δE [ρ, φ]

δφ(x)

∣∣∣∣
ρ=ρgs,φ=φgs

= 0

This is Hohenberg-Kohn DFT extended to pairing!

So far this is purely formal
we need a method to carry out the inversion
we will need to renormalize
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Kohn-Sham Inversion Method Revisited

Order-by-order matching in EFT expansion parameter λ

J[ρ, φ, λ] = J0[ρ, φ] + J1[ρ, φ] + J2[ρ, φ] + · · ·
j[ρ, φ, λ] = j0[ρ, φ] + j1[ρ, φ] + j2[ρ, φ] + · · ·

W̃ [J, j , λ] = W̃0[J, j] + W̃1[J, j] + W̃2[J, j] + · · ·
Γ̃[ρ, φ, λ] = Γ̃0[ρ, φ] + Γ̃1[ρ, φ] + Γ̃2[ρ, φ] + · · ·

0th order is Kohn-Sham system with potentials J0(x) and j0(x)
=⇒ yields the exact densities ρ(x) and φ(x)

introduce single-particle orbitals and solve(
h0(x)− µ0 j0(x)

j0(x) −h0(x) + µ0

)(
ui(x)
vi(x)

)
= Ei

(
ui(x)
vi(x)

)

where h0(x) ≡ −∇2

2M
+ v(x)− J0(x)

with conventional orthonormality relations for ui , vi

Dick Furnstahl Fermion Many-Body Systems III



Outline Intro DFT Future Intro Thermo DFT/EFT Results KLW Tau Pairing

Diagrammatic Expansion of Wi

Same diagrams, but with Nambu-Gor’kov Green’s functions

Γint = + + + + · · ·

iG =

(
〈Tψ↑(x)ψ†↑(x

′)〉0 〈Tψ↑(x)ψ↓(x ′)〉0
〈Tψ†↓(x)ψ†↑(x

′)〉0 〈Tψ†↓(x)ψ↓(x ′)〉0

)
≡

(
iG0

ks iF 0
ks

iF 0
ks
† −iG0

ks

)
In frequency space, the Green’s functions are

iG0
ks(x, x

′;ω) =
∑

i

[
ui(x) u∗i (x′)
ω − Ei + iη

+
vi(x′) v∗i (x)

ω + Ei − iη

]

iF 0
ks(x, x

′;ω) = −
∑

i

[
ui(x) v∗i (x′)
ω − Ei + iη

−
ui(x′) v∗i (x)

ω + Ei − iη

]
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Kohn-Sham Self-Consistency Procedure

Same iteration procedure as in Skyrme or RMF with pairing

In terms of the orbitals, the fermion density is

ρ(x) = 2
∑

i

|vi(x)|2

and the pair density is

φ(x) =
∑

i

[u∗i (x)vi(x) + ui(x)v∗i (x)]

The chemical potential µ0 is fixed by
∫
ρ(x) = A

Diagrams for Γ̃[ρ, φ] = −E [ρ, φ] (with LDA+) yields KS potentials

J0(x)
∣∣∣
ρ=ρgs

=
δΓ̃int[ρ, φ]

δρ(x)

∣∣∣∣∣
ρ=ρgs

and j0(x)
∣∣∣
φ=φgs

=
δΓ̃int[ρ, φ]

δφ(x)

∣∣∣∣∣
φ=φgs
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Renormalization

Even at leading order, divergences from 〈ψ†↑ψ
†
↓ + ψ↓ψ↑〉

cf. renormalization of relativistic scalar density ρs = 〈ψψ〉

Gap equation from self-consistency of j0 has linear divergence

j0 = −j1 = −1
2

C0φ
uniform

= −1
2

C0

∫
d3k

(2π)3

j0√
(ε0

k − µ0)2 + j20

Standard plan: renormalize as with scattering amplitude
Papenbrock & Bertsch =⇒ dim. reg. with minimal subtraction
In fact, much trickier . . . stay tuned!

In finite system, use derivative expansion technology
developed for one-loop relativistic vacuum calculations
cf. Bulgac et al., cutoff regularization and renormalization
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Summary: Many-Body Effective Field Theory

Effective field theory (EFT) =⇒ systematic calculations of
low-energy observables (cf. sophisticated numerical analysis)

Applications of EFT to many-body physics
Systematic construction of input N–body potentials
Power counting for many-body approximations
From dilute atomic systems to nuclei to neutron stars
Constructive approach to density functional theory (DFT)

Some of the challenges . . .
Connect to chiral EFT (see N. Kaiser and W. Weise)
Consistent treatment of pairing in higher orders (renormalization)
Systematic gradient expansions for DFT
Additional expansions for large scattering lengths
Relativistic DFT/EFT (nuclear and atomic)
Ab initio QCD calculations of nuclei?
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Ab Initio QCD Calculations of Nuclei?

Nonperturbative Lattice QCD =⇒ fπ, Mn, L1–L10

⇓ constants

phaseshift data =⇒ NN + NNN + · · ·
Chiral EFT

=⇒
low-energy NN

scattering +
few-body

⇓ analytic structure
constants

nuclear data =⇒ Many-Body EFT
(Covariant) DFT

=⇒ bulk properties
naturalness

⇓ energy
functional

Nuclear Properties
(208Pb,102Sn· · · 160Sn, etc.)
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(Nuclear) Many-Body Physics: “Old” vs. “New”

One Hamiltonian for all
problems and energy/length
scales

Infinite # of low-energy
potentials; different resolutions
=⇒ different dof’s and
Hamiltonians

Find the “best” potential There is no best potential
=⇒ use a convenient one!

Two-body data may be
sufficient; many-body forces as
last resort

Many-body data needed and
many-body forces inevitable

Avoid divergences Exploit divergences

Choose diagrams by “art” Power counting determines
diagrams and truncation error
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