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Intro Islands GFMC Nuclides Skyrme

@

Limits of nuclear
existence

protons
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Intro Islands GFMC Nuclides Skyrme

@

Limits of nuclear
existence

protons

@

07> Shell Many-body approaches
Ab initio Model for ordinary nuclei
few-body
calculations No-Core Shell Model
G-matrix
o [ = = =
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Monte Carlo Calculations of Many-Body Systems

@ For smaller systems (finite or in a box with pbc’s)
= approximate energy and full many-body wave function

e Variational, diffusion, path integral, Green'’s function MC
o All use the Metropolis algorithm: random walkers
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Monte Carlo Calculations of Many-Body Systems

@ For smaller systems (finite or in a box with pbc’s)
= approximate energy and full many-body wave function

e Variational, diffusion, path integral, Green'’s function MC
o All use the Metropolis algorithm: random walkers

@ Variational Monte Carlo (VMC): Estimate (E) = [dR p(R) E_(R)

e local energy E| (R) = wa;(g) with trial wave function ¢ (R)
- L . B ¢2(R)
e probability distribution p(R) = deT—dﬁ(R)

e acceptstep to R’ if p = ¢2(R")/¢2(R) > 1,
else if p < 1 accept with probability p

e minimize (E) or variance of E, (R) with respect to variational
parameters in 1 (R)

@ gives upper bound to ground state E

@ Requires very good trial wave function for reliable results
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Intro Islands GFMC Nuclides Skyrme

@ DMC and GFMC exploit S—equation in imaginary time
= diffusion!

B K,
~hs W(R,7) = ~ 52 VRV(R,7) +V (R)W(R, 7)

e Use Metropolis to propagate to large - = projects ground state
V(R,7) = /d R'G(R,R,7) V(R 1)

o Take many steps with small 7 approximation to G
e Generates “walker representation” of wave function (a set of R;’s)
= can only represent a positive density
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Intro Islands GFMC Nuclides Skyrme

@ DMC and GFMC exploit S—equation in imaginary time
= diffusion!

9 W
~hs W(R,7) = ~ 52 VRV(R,7) +V (R)W(R, 7)

e Use Metropolis to propagate to large - = projects ground state
V(R,7) = /dR’G(R, R, 7) V(R 7)

o Take many steps with small 7 approximation to G
e Generates “walker representation” of wave function (a set of R;’s)
= can only represent a positive density

@ Fermion sign problem for diffusion, path integral, GFMC
e for fermions, even ground-state wavefunction changes sign
(anti-symmetric)
e if trial function provides good representation of nodes, solve in
regions with nodal boundary conditions (“fixed node”)
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Intro Islands GFMC Nuclides Skyrme

Monte Carlo (GFMC) Calculations of Light Nuclei

Carlson, Pandharipande Pieper, Wiringa
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Intro Islands GFMC Nuclides Skyrme

Monte Carlo (GFMC) Calculations of Light Nuclei

Carlson, Pandharipande Pieper, Wiringa
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Intro Islands GFMC Nuclides Skyrme

Monte Carlo (GFMC) Calculations of Light Nuclei

Carlson, Pandharipande, Pieper, Wiringa
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Intro Islands GFMC Nuclides Skyrme

Chiral EFT: Systematic Many-Body Forces

@ Contribution of (n + 1)—-body potential relative to n—body:

(Vnron) Q2
(Vnn) - O(/\_X)
@ Hierarchy of three-body forces:

2-pion 1-pion 0-pion Order
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Intro Islands GFMC Nuclides Skyrme

Table of the Nuclides

Stable nuclei

Known nuclei

incognita

Neutron stars

Neutrons
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Intro Islands GFMC Nuclides Skyrme

Table of the Nuclides

THE VALLEY OF STABILITY
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Skyrme Hartree-Fock Energy Functionals

@ Skyrme energy density functional (for N = Z):

1 3 1 1
g[p, T,J] = WT + §top2 —|— Et3p2+a —|— E(3t1 + 5t2)p7’
1 , 3 1 )
+ a(gtl — 5t2)(Vp) - ZWopV J+ 3o (tj_ — tz)J

o where p(x) = 32, [#i(x)12 and 7(x) = ¥, [Vi(x) 2 (and J)
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Skyrme Hartree-Fock Energy Functionals

@ Skyrme energy density functional (for N = Z):

1 3 1 1
Elp,1,3d] = 2M —T+ étop + Et 3p? T 4 —(3t1 + 5tp)pr
3 1
+ a(gtl — 5t2)(Vp) - ZWopV J+ @( 1— tz)J

o where p(x) = 3, [¢i(x)P and 7(x) = 3°,, [Vi(x)[? (and J)
@ Minimize E = [dx &[p, 7,J] by varying the (normalized) ¢;’s

(V 1 V-I-U()+§W0Vp‘%VXU)(ba(X):ea(z’a(X)

2M*(x)
where the effective mass M*(x) is given by
1 —1+ 3 +£t (x)
M) M |16t T 1627
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Skyrme Hartree-Fock Energy Functionals

@ Skyrme energy density functional (for N = Z):

13 L, 2va, 1
2M — 7+ étop + Et 3p (3t1 + 5tp)pr

3 1
+ a(gtl — 5t2)(Vp) - ZWopV J+ @( 1— tz)J

o where p(x) = 3, [¢i(x)P and 7(x) = 3°,, [Vi(x)[? (and J)
@ Minimize E = [dx &[p, 7,J] by varying the (normalized) ¢;’s

Elp.7,d] =

(- V2M1( VU )+§W0Vp'%vx") 9a(X) = €a 9a(X)

where the effective mass M*(x) is given by

1 1 [3,.5, x)
oM(x) 2M |16 T 162 #
@ lterate until ¢;’s and ¢, ’s are self-consisent
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Questions and Criticisms of Skyrme HF

@ Typical [e.g., SkllI] model parameters (in units of MeV-fm"):
to=-1129 t; =395 t, =-95 t3=14000 Wy =120
e These seem large; is there an expansion?
e Where does p?t* come from?
e Parameter Fitting [von Neumann via Fermi via Dyson]:

“With four parameters | can fit an elephant, and with five | can
make him wiggle his trunk.”
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Questions and Criticisms of Skyrme HF

@ Typical [e.g., SkllI] model parameters (in units of MeV-fm"):
tp = —1129 t; =395 t, =-95 t3=14000 Wy =120
e These seem large; is there an expansion?
e Where does p?t* come from?
e Parameter Fitting [von Neumann via Fermi via Dyson]:

“With four parameters | can fit an elephant, and with five | can
make him wiggle his trunk.”

@ Skyrme HF is only mean-field; too simple to include correlations
e Law of the Conservation of Difficulty [Prof. R. Baker]
“Difficulty in a solution to a problem is always conserved
regardless of the technique used in the solution.”
e How do we improve the approach? Is pairing treated correctly?
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Questions and Criticisms of Skyrme HF

@ Typical [e.g., SkllI] model parameters (in units of MeV-fm"):
tp = —1129 t; =395 t, =-95 t3=14000 Wy =120
e These seem large; is there an expansion?
e Where does p?t* come from?
e Parameter Fitting [von Neumann via Fermi via Dyson]:

“With four parameters | can fit an elephant, and with five | can
make him wiggle his trunk.”

@ Skyrme HF is only mean-field; too simple to include correlations
e Law of the Conservation of Difficulty [Prof. R. Baker]
“Difficulty in a solution to a problem is always conserved
regardless of the technique used in the solution.”
e How do we improve the approach? Is pairing treated correctly?

@ How does Skyrme HF relate to NN (and NNN) forces?
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Intro Islands GFMC Nuclides Skyrme

Problems with Extrapolations

@ Mass formulas and energy functionals do well where there is
data, but elsewhere . ..
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Why Use EFT for Energy Functionals

@ Eliminating model dependences (no more “minimal” models!)

e framework for building a “complete” functional
e renormalization (you're doing it in any case!)
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Why Use EFT for Energy Functionals

@ Eliminating model dependences (no more “minimal” models!)
e framework for building a “complete” functional
e renormalization (you're doing it in any case!)

@ Power counting: what to sum at each order in a well-defined
expansion

e naturalness — estimates of truncation errors
@ robust empirical evidence from Skyrme and RMF functionals
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Why Use EFT for Energy Functionals

@ Eliminating model dependences (no more “minimal” models!)
e framework for building a “complete” functional
e renormalization (you're doing it in any case!)

@ Power counting: what to sum at each order in a well-defined
expansion

e naturalness — estimates of truncation errors
@ robust empirical evidence from Skyrme and RMF functionals

@ Similar to conventional “phenomenological” approaches

@ but with a rigorous foundation (DFT from effective action)
e extendable and can be connected to chiral EFT for NN and
few-body
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Why Use EFT for Energy Functionals

@ Eliminating model dependences (no more “minimal” models!)

e framework for building a “complete” functional
e renormalization (you're doing it in any case!)

@ Power counting: what to sum at each order in a well-defined
expansion

e naturalness — estimates of truncation errors
@ robust empirical evidence from Skyrme and RMF functionals

@ Similar to conventional “phenomenological” approaches
@ but with a rigorous foundation (DFT from effective action)
e extendable and can be connected to chiral EFT for NN and
few-body
@ New insight into analytic structure of functional
@ e.g., logs in low-density expansion in kras from renormalization
group
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Density Functional Theory (DFT)

@ Hohenberg-Kohn: There exists
an energy functional Ey[n] ...
Ev[n] = Fuk[n] + /d3x v (x)n(x)

@ Fpk is universal (same for any
external v) = H, to DNA!

r{fm)
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Density Functional Theory (DFT)

@ Hohenberg-Kohn: There exists
an energy functional Ey[n] ...

Ev[n] = Fuk[n] + /d3x v (x)n(x)

@ Fpk is universal (same for any
external v) = H, to DNA!

@ Useful if you can approximate
the energy functional

r{fm)
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Density Functional Theory (DFT)

@ Hohenberg-Kohn: There exists
an energy functional Ey[n] ...

Euln] = Fuadn] + [ d*xv(x)n(x)
@ Fpk is universal (same for any

external v) = H, to DNA!

@ Useful if you can approximate
the energy functional

@ Kohn-Sham procedure similar
to nuclear “mean field”

calculations 0 2 4 6 8 10
r{fm)
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DFT

Intro Thermo DFT/EFT Results

Density Functional Theory

@ Dominant application:
inhomogeneous electron
gas

Interacting point electrons
in static potential of atomic
nuclei

“Ab initio” calculations of
atoms, molecules,
crystals, surfaces

number of retrieved records per year

1000}

100¢

10

KLW Tau Pairing

Hartree-Fock P RN

Density Functional Theory

1970

1975

1985 1990 1995

year

1980
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Density Functional Theory

Atomization Energies of Hydrocarbon Molecules

@ Dominant application: 2o . ]
: 0 . .
inhomogeneous electron e e : ....... . ]
gas E .

. . %'207 ) [ ] [ [ ] ° n

@ Interacting point electrons  : | . ]
. . . . S ol _
in static potential of atomic 2 “
nUC|EI § -60— ® Hartree-Fock . . o —

< o DET Genereized Cradiont approximation |

@ “Ab initio” calculations of & 80 . q
atoms, molecules, 100

H, C, CH, CH, CH, CH CH
crystals, surfaces molecule
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DFT

DFT/EFT Results

KLW

Quotes From the DFT Literature

Tau

Pairing

[m] = = =
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Quotes From the DFT Literature
A Chemist’'s Guide to DFT (Koch & Holthausen, 2000)

“To many, the success of DFT appeared somewhat miraculous, and
maybe even unjust and unjustified. Unjust in view of the easy
achievement of accuracy that was so hard to come by in the wave
function based methods. And unjustified it appeared to those who
doubted the soundness of the theoretical foundations. ”
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Quotes From the DFT Literature
A Chemist’'s Guide to DFT (Koch & Holthausen, 2000)

“To many, the success of DFT appeared somewhat miraculous, and
maybe even unjust and unjustified. Unjust in view of the easy
achievement of accuracy that was so hard to come by in the wave
function based methods. And unjustified it appeared to those who
doubted the soundness of the theoretical foundations. ”

v

Density Functional Theory (AJP, Argaman & Makov, 2000)

“It is important to stress that all practical applications of DFT rest on
essentially uncontrolled approximations, such as the LDA ...”"

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Quotes From the DFT Literature

A Chemist’'s Guide to DFT (Koch & Holthausen, 2000)

“To many, the success of DFT appeared somewhat miraculous, and
maybe even unjust and unjustified. Unjust in view of the easy
achievement of accuracy that was so hard to come by in the wave
function based methods. And unjustified it appeared to those who
doubted the soundness of the theoretical foundations. ” )

Density Functional Theory (AJP, Argaman & Makov, 2000)

“It is important to stress that all practical applications of DFT rest on
essentially uncontrolled approximations, such as the LDA ...”"

V.

Meta-Generalized Gradient Approximation (Perdew et al., 1999)

“Some say that ‘there is no systematic way to construct density
functional approximations.” But there are more or less systematic
ways, and the approach taken ... here is one of the former.”

y
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Sham DFT

@ Interacting density with vyo = Non-interacting density with vks

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Sham DFT

@ Interacting density with vyo = Non-interacting density with vks
@ Orbitals {¢;(x)} in local potential vks([n],x) [but no M*(x)]

[-V?/2m + ws(X)]¢i = eigi = n(x) = Z |1 (x)[?

e find Kohn-Sham potential vks(x) from JE, [n]/dn(x)
@ Solve self-consistently
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Thermodynamic Interpretation of DFT

@ Consider a system of spins S; AN — \
on a lattice with interaction g LN -

@ The partition function has the
information about the energy,
magnetization of the system:

Z =Tre P92 SiSi

;N
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Thermodynamic Interpretation of DFT

@ Consider a system of spins S; N =] ¥
on a lattice with interaction g LN -

@ The partition function has the
information about the energy,
magnetization of the system:

Z =Tre P92 SiSi

;N

@ The magnetization M is

m - (Ts) =
i

%TI’ |:<§i:Si>e_ﬁgz{i’j}SiSj:| o o
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Add A Magnetic Probe Source H

@ The source probes configurations
near the ground state
Z[H] — e BFMH] — Tre—ﬁ(g Y SiSi—HYS)

source magnet

Dick Furnstahl Fermion Many-Body Systems Il



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Add A Magnetic Probe Source H

@ The source probes configurations
near the ground state
Z[H] — e BFMH] — Tre—ﬁ(g Y SiSi—HYS)

@ Variations of the source yield the L
magnetization
— —r = source magnet
M=), =% I
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Add A Magnetic Probe Source H

@ The source probes configurations
near the ground state
Z[H] — e_ﬂF[H] — Tre_ﬁ(g Z{i,j} Sisj_H Z\ Si)

@ Variations of the source yield the
magnetization

M- (Ss) -G T

@ F[H] is the Helmholtz free energy.
Set H = 0 (or equal to a real
external source) at the end

source magnet

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Legendre Transformation to Effective Action

@ Find H[M] by inverting

RS &
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DFT

Intro Thermo DFT/EFT Results KLW Tau Pairing

Legendre Transformation to Effective Action

@ Find H[M] by inverting

RS &

@ Legendre transform to the Gibbs

free energy

M) =F[H]+HM

Dick Furnstahl

r
M
r
-MO Mo M
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Legendre Transformation to Effective Action

@ Find H[M] by inverting
_ N\ _ _OF[H]
M= <Z S'>H - OH

@ Legendre transform to the Gibbs
free energy

M) =F[H]+HM

@ The ground-state magnetization
Mygs follows by minimizing I'[M]:

_orM] ar(M]

=M T Taw |,
gs

=0

r
M
r
M

Mo

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

DFT as Analogous Legendre Transformation

@ In analogy to the spin system, add source J(x) coupled to
density operator n(x) = ¥'(x)y(x) to the partition function:

Z[J] = e WPl o Tr e—ﬁ(ﬁJrJ n__, /DWT]DW] e Jc+IvTy]
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

DFT as Analogous Legendre Transformation

@ In analogy to the spin system, add source J(x) coupled to
density operator n(x) = ¥'(x)y(x) to the partition function:

Z[)] = e WBI « Tre—AHAIN /D[¢T]D[¢] e [[L+IvTY]

@ The density n(x) in the presence of J(x) is

) = A0 = 30
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

DFT as Analogous Legendre Transformation

@ In analogy to the spin system, add source J(x) coupled to
density operator n(x) = ¥'(x)y(x) to the partition function:

Z[)] = e WBI « Tre—AHAIN /DW]DW] e [[L+IvTY]

@ The density n(x) in the presence of J(x) is

) = A0 = 30

@ Invert to find J[n] and Legendre transform from J to n:

~ol[n] or[n]
—on(x) 7 sn(x)

rn]=-W[J]+ /J n with J(x)

Ngs(X)

= For static n(x), I'[n] o the DFT energy functional Fnk!

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

What can EFT do for DFT?

@ Effective action as a path integral = construct W [J],
order-by-order in EFT expansion

e For dilute system, same diagrams as before

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

What can EFT do for DFT?

@ Effective action as a path integral = construct W [J],
order-by-order in EFT expansion

e For dilute system, same diagrams as before

@ Inversion method: order-by-order inversion from W [J] to I'[n]

] Eg, J(X) = Jo(X) + JLo(X) + JNLO(X) + ...
@ Two conditions on Jg:

) = S and o)y, = 2 eend

N=nNgs

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

What can EFT do for DFT?

@ Effective action as a path integral = construct W [J],
order-by-order in EFT expansion

e For dilute system, same diagrams as before

@ Inversion method: order-by-order inversion from W [J] to I'[n]

] Eg, J(X) = Jo(X) + JLo(X) + JNLO(X) + ...
@ Two conditions on Jg:

) = S and o)y, = 2 eend

N=nNgs
@ Interpretation: Jg is the external potential that yields for a
noninteracting system the exact density

@ This is the Kohn-Sham potential!
@ Two conditions on Jo — Self-consistency

Dick Furnstahl Fermion Many-Body Systems Il



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Sham Jy According to the EFT Expansion
@ Simplifying with the local density approximation (LDA)

Jo(X) =

Dick Furnstahl Fermion Many-Body Systems Il



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Sham Jy According to the EFT Expansion
@ Simplifying with the local density approximation (LDA)

(v=1) 4rap

10 R Jo(x) = | = — 4 rX)
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Sham Jy According to the EFT Expansion
@ Simplifying with the local density approximation (LDA)

v — J 47TTaop(x)

10- @ + OO — e 2 o)

Jo(x) = [—
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Sham Jy According to the EFT Expansion
@ Simplifying with the local density approximation (LDA)

v — J 47TTaop(x)

10- @ + OO — e 2 o)

NNLO: (O ) + @O

Jo(x) = [—
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Sham Jy According to the EFT Expansion
@ Simplifying with the local density approximation (LDA)

n = |- oD

NLO : @ + C>OO _Cl%[p(x)]m

.3 5/3
NNLO: ¢ O x: » )+ @O c2 fale()
g}o + @ + @
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Sham Jy According to the EFT Expansion
@ Simplifying with the local density approximation (LDA)

v — J 47TTaop(x)

LO: @ + OO —a 2& [p(x)]*/°
_ 3 5/3
NNLO: ¢ O x: » )+ @O c2 fale()
— caag ro[p(x)*/?

}O R e ajlo0)" +

O+ O

Jo(x) = [—
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DFT

Intro  Thermo
Dilute Fermi Gas in a Harmonic Trap

DFT/EFT Results

KLW

Iteration procedure:

Tau Pairing

[m] = = =
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Dilute Fermi Gas in a Harmonic Trap

Iteration procedure:

1. Guess an initial density profile n(r) (e.g., Thomas-Fermi)
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Dilute Fermi Gas in a Harmonic Trap

Iteration procedure:
1. Guess an initial density profile n(r) (e.g., Thomas-Fermi)

2. Evaluate local single-particle potential vks(r) = v(r) — Jo(r)
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Dilute Fermi Gas in a Harmonic Trap

Iteration procedure:
1. Guess an initial density profile n(r) (e.g., Thomas-Fermi)
2. Evaluate local single-particle potential vks(r) = v(r) — Jo(r)
3. Solve for lowest N states (including degeneracies): {1q, €q }
2

[—ZV—M + Vks(r)] Ya(X) = €ata(X)
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Dilute Fermi Gas in a Harmonic Trap

Iteration procedure:
1. Guess an initial density profile n(r) (e.g., Thomas-Fermi)
2. Evaluate local single-particle potential vks(r) = v(r) — Jo(r)
3. Solve for lowest N states (including degeneracies): {1q, €q }
2

[—ZV—M + Vks(r)] Ya(X) = €ata(X)

4. Compute a new density n(r) = 2221 [0 (X)|?
e other observables are functionals of {¢4, €4}
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Dilute Fermi Gas in a Harmonic Trap

Iteration procedure:
1. Guess an initial density profile n(r) (e.g., Thomas-Fermi)
2. Evaluate local single-particle potential vks(r) = v(r) — Jo(r)
3. Solve for lowest N states (including degeneracies): {1q, €q }
2

[_ZV_M + Vks(r)] Ya(X) = €ata(X)

4. Compute a new density n(r) = 2221 [0 (X)|?
e other observables are functionals of {¢4, €4}

[

. Repeat 2.—4. until changes are small (“self-consistent”)
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Dilute Fermi Gas in a Harmonic Trap

Iteration procedure:
1. Guess an initial density profile n(r) (e.g., Thomas-Fermi)

2. Evaluate local single-particle potential vks(r) = v(r) — Jo(r)
3. Solve for lowest N states (including degeneracies): {1q, €q }

[_ZV_M + Vks(r)] Ya(X) = €ata(X)

4. Compute a new density n(r) = 2221 [0 (X)|?
e other observables are functionals of {¢4, €4}
5. Repeat 2.—4. until changes are small (“self-consistent”)

Looks like a Skyrme Hartree-Fock calculation!
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Check Out An Example

Dilute Fermi Gas in Harmonic Trap
N=7, A=240, v=2, a,=-0.160

4 T T ‘ T T
L l J— C0 = 0 (noninteracting) ‘ |
3 [ —
<kpa > |
-0.524 |

|
5 6
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Check Out An Example

Dilute Fermi Gas in Harmonic Trap
N=7, A=240, v=2, a,=-0.160

4 \ \ ‘ \ \

J— C0 = 0 (noninteracting)
— Kohn-Sham LO

E/A <kFas>
6.750 -0.524 |
5.982 -0.578
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Check Out An Example

Dilute Fermi Gas in Harmonic Trap
N=7, A=240, v=2, a,=-0.160
4 T T ‘ T T

J— C0 = 0 (noninteracting)
— Kohn-Sham LO
—— Kohn-Sham NLO (LDA)

— E/A <kpa >
=2 6750  -0524 _
a 5982 -0.578

6.336  -0550 1
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Check Out An Example

DFT Intro Thermo DFT/EFT Results KLW
Dilute Fermi Gas in Harmonic Trap
N=7, A=240, v=2, a,=-0.160
T T T T T
J— C0=O(n0nimeracting) |
— Kohn-Sham LO
—— Kohn-Sham NLO (LDA)
— Kohn-Sham NNLO (LDA) —
E/A <kpa > |
6.750 -0.524 |
5.982 -0.578
6.336 -0.550 A
6.311 -0.553
| |
2 3 4 5 6
/b

Tau Pairing
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Power Counting Terms in Energy Functionals

@ Scale contributions according to average density or (kg)

T
——
—— B
—a—
—a—
—a—
I

e

[|lm v=4, a=-0.1, A=140
m v=4, a5=+0.1,A=140

energy/particle

W v=2,a=+.16, A=330

! ! |
001 LO NLO NNLO
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Power Counting Terms in Energy Functionals

@ Scale contributions according to average density or (kg)

=
—
—— B
—a—
Ol
—a—
I

Ly

[|lm v=4, a=-0.1, A=140
m v=4, a5=+0.1,A=140

energy/particle

W v=2,a=+.16, A=330

! ! |
001 LO NLO NNLO
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Power Counting Terms in Energy Functionals

@ Scale contributions according to average density or (kg)

-
[ |
—Be B
—a—
@l
—

.

[|lm v=4, a=-0.1, A=140
m v=4, a5=+0.1,A=140

energy/particle

W v=2,a=+.16, A=330

! ! |
001 LO NLO NNLO
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Power Counting Terms in Energy Functionals

@ Scale contributions according to average density or (kg)

-
[ |
—Be B
e
@l
@
|

.

[|lm v=4, a=-0.1, A=140
m v=4, a5=+0.1,A=140
[ J

energy/particle

W v=2,a=+.16, A=330

! ! |
001 LO NLO NNLO
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Power Counting Terms in Energy Functionals

@ Scale contributions according to average density or (kg)

103 T T T T
s 4 = F ZOSPb Ovector
F ] ] Oscalar
] E 10° Omixed
5 ) Q g [ ] Vgradient
= 1 O
=} 1= F—eo
5] g 10l Aisovector
\& ©
2001 B & 4
2 [ ] > v
© 1 2100 = TR AN \V4
[ ] o Y AD
||| v=4 as=—0.1, A=140 | o
B V=4 a=+0.1, A=140 © , 1 1 1 1
L N - i 10-
W v=2,a=+.16, A=330 [ > 3 4 5
| | | i
0.01 o NLO NNLO power of density

@ Accurate estimates = truncation errors understood
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Kohn-Luttinger-Ward Theorem (1960)

@ T — 0 diagrammatic expansion of Q(u,V,T) in external v(x)
— same as F(N,V,T = 0) with o and no anomalous diagrams

Qu, V.T) = ) + € 0 ) +©+(><><)+

with Go(p, T
T4 PN VT =0)= Bo(N) + (OmC) + @
with Go(uo)
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Luttinger-Ward Theorem (1960)

@ T — 0 diagrammatic expansion of Q(u,V,T) in external v(x)
— same as F(N,V,T = 0) with o and no anomalous diagrams

O V.T) = Uyl) + € 0 ) +©+(><>()+

with Go(p, T
T4 PN VT =0)= Bo(N) + (OmC) + @
with Go(uo)

@ Uniform Fermi system with no external potential (degeneracy v):
po(N) = (672N /vV )23 = k2/2M = €2
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Kohn-Luttinger-Ward Theorem (1960)

@ T — 0 diagrammatic expansion of Q(u,V,T) in external v(x)
— same as F(N,V,T = 0) with o and no anomalous diagrams

Qu, V.T) = ) + € 0 ) +©+(><>()+

with Go(u, T’
T4 PN VT =0)= Bo(N) + (OmC) + @
with Go(uo)

@ Uniform Fermi system with no external potential (degeneracy v):
po(N) = (672N /vV )23 = k2/2M = €2

@ If symmetry of non-interacting and interacting systems agree
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Kohn-Luttinger Inversion Method  [F & w, sec. 30]

@ Find F(N) = Q(u) + puN with u(N) from N(p) = —(092/0p)1v
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Luttinger Inversion Method  [F&w, sec. 30]

@ Find F(N) = Q(u) + puN with u(N) from N(p) = —(092/0p)1v
e expand about non-interacting system (subscripts label expansion):
Qu) = Qo(p) + Qu(p) +Qa(p) + -+

Bo= pot bzt
F(N) = Fo(N)+Fi(N)+Fx(N)+---

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Luttinger Inversion Method  [F&w, sec. 30]

@ Find F(N) = Q(u) + puN with u(N) from N(p) = —(092/0p)1v
e expand about non-interacting system (subscripts label expansion):

Q) = Qolp)+ Q)+ (k) +---
po= ot et
FIN) = Fo(N)+F(N)+Fs(N)+---

e invert N = —(0Q(p)/0u)1y order-by-order in expansion
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Luttinger Inversion Method  [F&w, sec. 30]

@ Find F(N) = Q(u) + puN with u(N) from N(p) = —(092/0p)1v
e expand about non-interacting system (subscripts label expansion):
Qu) = Qo(p) + Qu(p) +Qa(p) + -+

Bo= po b
F(N) = Fo(N)+Fi(N)+F(N)+---

e invert N = —(9Q(u)/0u)v order-by-order in expansion
e N appears in 0" order only: N = —[090/0u)],i=1s = 110(N)
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Kohn-Luttinger Inversion Method  [F&w, sec. 30]

@ Find F(N) = Q(u) + puN with u(N) from N(p) = —(092/0p)1v
e expand about non-interacting system (subscripts label expansion):

Q) = Qolp)+ Q)+ (k) +---
po= o+t
FIN) = Fo(N)+F(N)+Fs(N)+---

e invert N = —(9Q(u)/0u)v order-by-order in expansion
e N appears in 0" order only: N = —[090/0u)],i=1s = 110(N)
o first order has two terms, which lets us solve for p;:

[891/8,“]#:#0

0 = [0Q1/04] ji=po + Ml[azﬂo/aﬂz]u:uo == f1 = _W
H=[10
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Kohn-Luttinger Inversion Method  [F&w, sec. 30]

@ Find F(N) = Q(u) + puN with u(N) from N(p) = —(092/0p)1v
e expand about non-interacting system (subscripts label expansion):
Qu) = Qo(p) + Qu(p) +Qa(p) + -+

Bo= po b
F(N) = Fo(N)+Fi(N)+F(N)+---

e invert N = —(9Q(u)/0u)v order-by-order in expansion
e N appears in 0" order only: N = —[090/0u)],i=1s = 110(N)
o first order has two terms, which lets us solve for p;:

. [891/8,“]#:#0
[02Q0/01®] = 1uo

@ Same pattern to all orders: ; is determined by functions of g

0 = [0S /0p) j=po + Nl[aZQO/aNZ]u:ﬂo == M=

Dick Furnstahl Fermion Many-Body Systems Il



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

@ Apply this inversion to F = Q + uN:

o0
FIN) = Qo(uo) + poN + Qu1(p0) + N + g | o
8M H=Ho
Fo
Fy

o9 o0 1 ,[02Q
+ Q2(p0) + p2N + p2 [a—o} + 1 {6—1} + E“i [8—20] +
1 pi=po Pl = K L u=po

F2
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@ Apply this inversion to F = Q + uN:

19,9)
F(N) = Qo(po) + 1N + Qa(po) + paN + pua [8—0]
—_— HJ p=po
Fo
F1
00 oQ 1 82Q
+ Qa(p0) + p2N + pi2 [a—o} + {6—1} + 5t [3—20] +
F p=po H =0 =L i=po

F2

@ ;i always cancels from F; fori > 1:

1 [0Q1/0p)?

H=Ho

2 [6290/6ﬂ2]u=uo

Fl F2

F(N) = Fo(N) + Q1(z0) + Q2(10)
N——
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Generalizing the KLW Inversion Approach
@ Three generalizations = Kohn-Sham DFT, other sources,

and pairing
1. uN + J(x)p(x) with I(x) = 6F[p]/dp(X) — 0O in ground state

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Generalizing the KLW Inversion Approach

@ Three generalizations = Kohn-Sham DFT, other sources,
and pairing
1. uN 4+ J(x)p(x) with I(x) = dF[p]/dp(x) — O in ground state
2. Add a source coupled to the kinetic energy density
+J3.(x)7(x) where 7(x)= (V- Vi)

= M*(x) in the Kohn-Sham equation (cf. Skyrme)
vZ
“om

+ Vks(X)] Yo = €atha = [~V V +Vks(X)] Yo = €atba

1
M*(x)
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Generalizing the KLW Inversion Approach

@ Three generalizations = Kohn-Sham DFT, other sources,
and pairing
1. uN 4+ J(x)p(x) with I(x) = dF[p]/dp(x) — O in ground state
2. Add a source coupled to the kinetic energy density
+J3.(x)7(x) where 7(x)= (V- Vi)

= M*(x) in the Kohn-Sham equation (cf. Skyrme)
vZ
“om

+ Vks(X)] Yo = €atha = [~V V +Vks(X)] Yo = €atba

1
M*(x)

3. Add a source coupled to the non-conserved pair density
= e.d., j(¥]¢] +1¢;) = set ] to zero in ground state
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Generalizing the KLW Inversion Approach

@ Three generalizations = Kohn-Sham DFT, other sources,
and pairing
1. uN 4+ J(x)p(x) with I(x) = dF[p]/dp(x) — O in ground state
2. Add a source coupled to the kinetic energy density
+J3.(x)7(x) where 7(x)= (V- Vi)

= M*(x) in the Kohn-Sham equation (cf. Skyrme)
vZ
“om

+ Vks(X)] Yo = €atha = [~V V +Vks(X)] Yo = €atba

1
M*(x)
3. Add a source coupled to the non-conserved pair density

—e.Jg, J(l/}WI +111) = setj to zero in ground state

@ Same inversion method, but use [jlgs=Jo +j1 +j2 +--- =0
— solve for jg iteratively: from [jo]oig find [jo]new = —j1 —j2 + - -
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DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Warm-Up Problem: Hartree-Fock Diagrams Only
@ Consider bowtie diagram from vertices with derivatives:

c = C s v
Lot =+ 2 [(G0) (V) + he] + 2@ V) - (TE) +...

A D+ O
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Warm-Up Problem: Hartree-Fock Diagrams Only
@ Consider bowtie diagram from vertices with derivatives:

c = C s v
Lot =+ 2 [(G0) (V) + he] + 2@ V) - (TE) +...

A D+ O

@ Energy density in Kohn-Sham LDA (v = 2):

/3 2/3
5'm—-~-+§[§<7> R e A R
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Warm-Up Problem: Hartree-Fock Diagrams Only
@ Consider bowtie diagram from vertices with derivatives:

C = C s v
Lot =+ 2 [(G0) (V) + he] + 2@ V) - (TE) +...

A D+ O

@ Energy density in Kohn-Sham LDA (v = 2):
. Co(3 (672\7° 441 3C;13 (672\*° 4
fm=t g3 <—) )+ =525 <—) IR
@ Energy density in Kohn-Sham with 7 (v = 2):

C; 3 3C}
Eint=...+ ?[07'4‘ Z(VP)Z] + 82

[pT — %(Vp)z] +...
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Pairing in DFT/EFT from Effective Action

@ Natural framework for spontaneous symmetry breaking

e e.g., test for zero-field magnetization M in a spin system
e introduce an external field H to break rotational symmetry
e Legendre transform Helmholtz free energy F(H):

invert M =—-90F(H)/OH = G[M]=F[H(M)]+MH(M)

@ since H = 9G/0M, minimize G to find ground state
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Pairing in DFT/EFT from Effective Action

@ With pairing, the broken symmetry is a U(1) [phase] symmetry

e standard treatment in condensed matter uses auxiliary
pairing field A(x)

e to leading order in the loop expansion (mean field)
— BCS approximation

@ Here: Combine the EFT expansion and the inversion method

e external current j coupled to pair density breaks symmetry
@ natural generalization of Kohn-Sham DFT
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Generalizing Effective Action to Include Pairing

@ Generating functional with sources J,j coupled to densities:

Z[0.]] = e 0 = [D(ply) e IO eI 09w
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Generalizing Effective Action to Include Pairing

@ Generating functional with sources J,j coupled to densities:

Z[3,j] = e Wil = /D(z/;w) e JaX [L+I00PLba +100W %] +1191)]

@ Densities found by functional derivatives wrt J, j:

P = (61 (0000, = Sl
J
$(x) = (WI)WT(x) + L ()¥1(x))a) = 5\:5\;([i;j] 3

Dick Furnstahl Fermion Many-Body Systems I



DFT Intro Thermo DFT/EFT Results KLW Tau Pairing

Generalizing Effective Action to Include Pairing

@ Generating functional with sources J,j coupled to densities:

Z[3,j] = e Wil = /wa) e JaX [L+I00PLba +100W %] +1191)]

@ Densities found by functional derivatives wrt J, j:

P = (61 (0000, = Sl
J
$(x) = (WI)WT(x) + L ()¥1(x))a) = 5\:5\]/(53” 3

@ Effective action I'[p, ¢] by functional Legendre transformation:

Mool = WL~ [d%300n(x) ~ [axi()o(x)
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@ [[p, ] x ground-state energy functional E [p, ¢]
e at finite temperature, the proportionality constant is 3
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@ [[p, ] x ground-state energy functional E [p, ¢]
e at finite temperature, the proportionality constant is 3

@ The sources are given by functional derivatives wrt p and ¢
SE[p, 9] oE[p,¢] _ .
=J(X and =]J(X
56y 5000 %)

e but the sources are zero in the ground state
e — determine ground-state p(x) and ¢(x) by stationarity:

SE[p, ¢] _ 9E[p, 9] _0

5’0()() P=pgs;d=gs 5¢(X) P=pgs;d=dgs
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@ [[p, ] x ground-state energy functional E [p, ¢]
e at finite temperature, the proportionality constant is 3

@ The sources are given by functional derivatives wrt p and ¢

SE[p, 4] _ SE[p, 4] _ .
Tk O A ey I

e but the sources are zero in the ground state
e — determine ground-state p(x) and ¢(x) by stationarity:

SE[p, ¢] _ 9E[p, 9] _0

5’0()() P=pgs;d=gs 5¢(X) P=pgs;d=dgs

@ This is Hohenberg-Kohn DFT extended to pairing!
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@ [[p, ] x ground-state energy functional E [p, ¢]
e at finite temperature, the proportionality constant is 3

@ The sources are given by functional derivatives wrt p and ¢

SE[p, 4] _ SE[p, 4] _ .
Tk O A ey I

e but the sources are zero in the ground state
e — determine ground-state p(x) and ¢(x) by stationarity:

SE[p, ¢] _ 9E[p, 9] _0

5’0()() P=pgs;d=gs 5¢(X) P=pgs;d=dgs

@ This is Hohenberg-Kohn DFT extended to pairing!

@ So far this is purely formal

e we need a method to carry out the inversion
e we will need to renormalize
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Kohn-Sham Inversion Method Revisited

@ Order-by-order matching in EFT expansion parameter A

Ip. 0, A\ = Jolp, ¢l + dalp, @] + J2[p, 0] + - - -

W[J,],)\] = WO[‘J7J]+W1[‘J’J]+W2[‘]7J]+
o, 6.\ = Tolp, ¢] + Talp.¢] + Falp. o] + -+

@ 0™ order is Kohn-Sham system with potentials Jo(x) and jo(x)
— yields the exact densities p(x) and ¢(X)

e introduce single-particle orbitals and solve

(" ) (303) = (4)

2
where ho(x) = _ZV_M + v (X) — Jo(x)

with conventional orthonormality relations for u;, v;
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Diagrammatic Expansion of W,

@ Same diagrams, but with Nambu-Gor’kov Green'’s functions

G <T¢T(X)¢E(X’)>o (T ()1 (X))o | _ iGEsT iR
(Tl )%} (X))o (Tw](X)eb (X))o iFe —iGR
@ In frequency space, the Green'’s functions are

(80 (g xe ) ui()ur(x’) | vi(x) v (x)
IGys(x, X5 ) _zi: [w—Ei +in + w+ E; —in:|

s 3 (208D - ey
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Kohn-Sham Self-Consistency Procedure

@ Same iteration procedure as in Skyrme or RMF with pairing
@ In terms of the orbitals, the fermion density is

p0) =23 i)
and the pair density is
P(x) = Z [ui” ()i (%) + Ui (x)vi" (X)]
@ The chemical potential 1 is fixed by [p(x) = A
@ Diagrams for [[p, ] = —E[p, ¢] (with LDA+) yields KS potentials

_ (SFim[p, (b]
$=dgs dp(x)

_ 6Fint [P, ¢]
P=Pgs 5p(X)

30(0) and jo(x)|

P=Pgs ¢:¢gs
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Renormalization

@ Even at leading order, divergences from (vl + v vy)
e cf. renormalization of relativistic scalar density ps = (¢1))

@ Gap equation from self-consistency of jo has linear divergence

. . 1 d3k j
o= —j1 = _§C0¢ unlform 2Co /(zﬂ)g Jo .
(e — 1o)?+1ig

e Standard plan: renormalize as with scattering amplitude
e Papenbrock & Bertsch = dim. reg. with minimal subtraction
e In fact, much trickier ... stay tuned!

@ In finite system, use derivative expansion technology

e developed for one-loop relativistic vacuum calculations
e cf. Bulgac et al., cutoff regularization and renormalization
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Future QCD

Summary: Many-Body Effective Field Theory

@ Effective field theory (EFT) = systematic calculations of
low-energy observables (cf. sophisticated numerical analysis)
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Future QCD

Summary: Many-Body Effective Field Theory

@ Effective field theory (EFT) = systematic calculations of
low-energy observables (cf. sophisticated numerical analysis)

@ Applications of EFT to many-body physics
e Systematic construction of input N—body potentials
e Power counting for many-body approximations
e From dilute atomic systems to nuclei to neutron stars
e Constructive approach to density functional theory (DFT)
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Future QCD

Summary: Many-Body Effective Field Theory

@ Effective field theory (EFT) = systematic calculations of
low-energy observables (cf. sophisticated numerical analysis)

@ Applications of EFT to many-body physics

Systematic construction of input N—body potentials

e Power counting for many-body approximations

e From dilute atomic systems to nuclei to neutron stars

e Constructive approach to density functional theory (DFT)

@ Some of the challenges ...

Connect to chiral EFT (see N. Kaiser and W. Weise)

Consistent treatment of pairing in higher orders (renormalization)
Systematic gradient expansions for DFT

Additional expansions for large scattering lengths

Relativistic DFT/EFT (nuclear and atomic)

Ab initio QCD calculations of nuclei?
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Future QCD

Ab Initio QCD Calculations of Nuclei?
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Future QCD

Ab Initio QCD Calculations of Nuclei?

Many-Body EFT bulk properties

nuclear == i
uclear data (Covariant) DFT naturalness
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Future QCD

Ab Initio QCD Calculations of Nuclei?

Many-Body EFT bulk properties
nuclear data | = (Covariant) DFT —| naturalness
energy
functional

Nuclear Properties
(208pp,102gp. .. 160gn etc.)
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Future QCD

Ab Initio QCD Calculations of Nuclei?

low-energy NN
phaseshift data | — NNCJ;].NI\IIE;T' N —| scattering +
Ira few-body

Many-Body EFT bulk properties
nuclear data | = (Covariant) DFT —| naturalness
energy
functional

Nuclear Properties
p
(208pp,102gp. .. 160gn etc.)
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Future QCD

Ab Initio QCD Calculations of Nuclei?

low-energy NN
phaseshift data | — NNCJ;].NI\IIE;T' N —| scattering +
Ira few-body

analytic structure
constants

Many-Body EFT bulk properties
nuclear data | = (Covariant) DFT —| naturalness
energy
functional

Nuclear Properties
p
(208pp,102gp. .. 160gn etc.)
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Future QCD

Ab Initio QCD Calculations of Nuclei?

Nonperturbative Lattice QCD ||—| f., My, Li—L1g ‘

low-energy NN
phaseshift data | — NNCJ;].N'\IIE;T' N —>| scattering +
Ira few-body

analytic structure
constants

Many-Body EFT bulk properties
nuclear data | = (Covariant) DFT —| naturalness
energy
functional

Nuclear Properties
(298pp,102gp. .. 160G etc.)
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Future QCD

Ab Initio QCD Calculations of Nuclei?

Nonperturbative Lattice QCD ||—| f., My, Li—L1g ‘

\U/ constants

low-energy NN
phaseshift data | — NNCJ;].N'\IIE;T' N —>| scattering +
Ira few-body

analytic structure
constants

Many-Body EFT bulk properties
nuclear data | = (Covariant) DFT —| naturalness
energy
functional

Nuclear Properties
(298pp,102gp. .. 160G etc.)
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Future QCD

(Nuclear) Many-Body Physics: “Old” vs. “New”

Infinite # of low-energy
potentials; different resolutions
— different dof's and
Hamiltonians

There is no best potential
= use a convenient one!

One Hamiltonian for all
problems and energy/length
scales

Find the “best” potential

Two-body data may be
sufficient; many-body forces as
last resort

Avoid divergences Exploit divergences

Many-body data needed and
many-body forces inevitable

Power counting determines

Choose diagrams by "art diagrams and truncation error
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