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Examples of Fermion Many-Body Systems

Collections of “fundamental” fermions (electrons, quarks, . . . )
or composites of odd number of fermions (e.g., proton)

Isolated atoms or molecules
electrons interacting via long-range (screened) Coulomb
find charge distribution, binding energy, bond lengths, . . .

Bulk solid-state materials
metals, insulators, semiconductors, superconductors, . . .

Liquid 3He (superfluid!)

Cold fermionic atoms in (optical) traps

Atomic nuclei

Neutron stars
color superconducting quark matter
neutron matter

Dick Furnstahl Fermion Many-Body Systems I



Outline Intro EFT Dilute Summary Refs Systems Traditional

Examples of Fermion Many-Body Systems

Collections of “fundamental” fermions (electrons, quarks, . . . )
or composites of odd number of fermions (e.g., proton)

Isolated atoms or molecules
electrons interacting via long-range (screened) Coulomb
find charge distribution, binding energy, bond lengths, . . .

Bulk solid-state materials
metals, insulators, semiconductors, superconductors, . . .

Liquid 3He (superfluid!)

Cold fermionic atoms in (optical) traps

Atomic nuclei

Neutron stars
color superconducting quark matter
neutron matter

Dick Furnstahl Fermion Many-Body Systems I



Outline Intro EFT Dilute Summary Refs Systems Traditional

  5

82

50

28

28

50

82

20
82

2
8

20

126

A=10

A=12 A~60

Densit
y Functio

nal T
heory

Selfc
onsis

tent M
ean Field

Ab initio
few-body

calculations No-Core Shell Model 
G-matrix

r-p
rocess

rp-proce
ss

0Ñω Shell
Model

Limits of nuclear
existence

p
ro

to
n
s

neutrons

Many-body approaches
for ordinary nuclei

 

 

Figure 2:  Top: the nuclear landscape - the territory of RIA physics.  The black squares represent the stable 
nuclei and the nuclei with half-lives comparable to or longer than the age of the Earth (4.5 billion years).  
These nuclei form the "valley of stability".  The yellow region indicates shorter lived nuclei that have been 
produced and studied in laboratories.  By adding either protons or neutrons one moves away from the 
valley of stability, finally reaching the drip lines where the nuclear binding ends because the forces between 
neutrons and protons are no longer strong enough to hold these particles together.  Many thousands of 
radioactive nuclei with very small or very large N/Z ratios are yet to be explored.  In the (N,Z) landscape, 
they form the terra incognita indicated in green.  The proton drip line is already relatively well delineated 
experimentally up to Z=83.  In contrast, the neutron drip line is considerably further from the valley of 
stability and harder to approach.  Except for the lightest nuclei where it has been reached experimentally, 
the neutron drip line has to be estimated on the basis of nuclear models - hence it is very uncertain due to 
the dramatic extrapolations involved.  The red vertical and horizontal lines show the magic numbers around 
the valley of stability.  The anticipated paths of astrophysical processes (r-process, purple line; rp-process, 
turquoise line) are shown.  Bottom: various theoretical approaches to the nuclear many-body problem.  For 
the lightest nuclei, ab initio calculations (Green’s Function Monte Carlo, no-core shell model) based on the 
bare nucleon-nucleon interaction, are possible.  Medium-mass nuclei can be treated by the large-scale shell 
model.  For heavy nuclei, the density functional theory (based on selfconsistent mean field) is the tool of 
choice.  By investigating the intersections between these theoretical strategies, one aims at nothing less than 
developing the unified description of the nucleus. 
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How Are Cold Atoms Like Neutron Stars?

Regal et al., ultracold fermions

Chandra X-Ray Observatory
image of pulsar in 3C58
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Nuclear and Cold Atom Many-Body Problems

Lennard-Jones and nucleon-nucleon potentials
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[figure borrowed from J. Dobaczewski]

Are there universal features of such many-body systems?

How can we deal with “hard cores” in many-body systems?
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(Nuclear) Many-Body Physics: “Old” Approach

One Hamiltonian for all
problems and energy/length
scales

For nuclear structure, protons
and neutrons with a local
potential fit to NN data

Find the “best” potential NN potential with χ2/dof ≈ 1 up
to ∼ 300 MeV energy

Two-body data may be
sufficient; many-body forces as
last resort

Let phenomenology dictate
whether three-body forces are
needed (answer: yes!)

Avoid divergences

Add “form factor” to suppress
high-energy intermediate states;
don’t consider cutoff
dependence

Choose diagrams by “art”
Use physical arguments (often
handwaving) to justify the
subset of diagrams used
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Resolution and the Pointillists

George Seurat painted using closely spaced small dots
(≈ 0.4 mm wide) of pure pigment

Why do the dots blend together?
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Diffraction and Resolution
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Diffraction and Resolution

Resolution of Small Apertures

Two point sources far from the aperture each produce a diffrac-
tion pattern.

If the angle subtended by the sources at the aperture is large
enough, the diffraction patterns are distinguishable as shown
in Fig. (a).

If the angle is small, the diffraction patterns can overlap so that
the sources are not well resolved as shown in Fig. (b).
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Wavelength and Resolution
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Principles of Effective Low-Energy Theories

If system is probed at low energies, fine details not resolved

use low-energy variables for low-energy processes
short-distance structure can be replaced by something simpler
without distorting low-energy observables
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“Simple” Many-Body Problem: Hard Spheres

Infinite potential at radius R

Scattering solutions are
simple:

0 R

u0(r) = sin[k(r-R)]

r

Ek = k2/M

What is the energy / particle
of the many-body system at a
given density?

R

>>R
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Quick Review of Scattering

P/2− k

P/2 + k

P/2− k′

P/2 + k′

0 R

sin(kr+δ)

r

Relative motion in frame with P = 0: ψ(r) r→∞−→ eik·r + f (k , θ)eikr

r

where k2 = k ′2 = MEk and cos θ = k̂ · k̂ ′

Differential cross section is dσ/dΩ = |f (k , θ)|2

Central V =⇒ partial waves: f (k , θ) =
∑

l(2l + 1)fl(k)Pl(cos θ)

where fl(k) =
eiδl (k) sin δl(k)

k
=

1
k cot δl(k)− ik

and the S-wave phase shift is defined by

u0(r)
r→∞−→ sin[kr + δ0(k)] =⇒ δ0(k) = −kR for hard sphere
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At Low Energies: Effective Range Expansion

As first shown by Schwinger, k l+1 cot δl(k) has a power series
expansion. For l = 0:

k cot δ0 = − 1
a0

+
1
2

r0k2 − Pr3
0 k4 + · · ·

which defines the scattering length a0 and the effective range r0

While r0 ∼ R, the range of the potential, a0 can be anything
if a0 ∼ R, it is called “natural”
|a0| � R (unnatural) is particularly interesting =⇒ tomorrow!

The effective range expansion for hard sphere scattering is:

k cot(−kR) = − 1
R

+
1
3

Rk2 + · · · =⇒ a0 = R r0 = 2R/3

so the low-energy effective theory is natural

Dick Furnstahl Fermion Many-Body Systems I
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In Search of a Perturbative Expansion

If a0 is natural, then low-energy scattering simplifies further

For scattering at momentum k � 1/R, we should recover a
perturbative expansion in kR for scattering amplitude:

f0(k) ∝ 1
k cot δ(k)− ik

−→ a0
[
1− ia0k − (a2

0 − a0r0/2)k2 +O(k3a3
0)
]

Can we reproduce this simple expansion for the hard-sphere?

Perturbation theory in the hard-sphere potential won’t work:

0 R

=⇒ 〈k|V |k′〉 ∝
∫

dx eik·x V (x) e−ik′·x −→∞
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In Search of a Perturbative Expansion (cont.)

Standard solution: Solve the scattering problem
nonperturbatively, then expand in kR

For our example, this is easy =⇒ use δ0(k) = −kR:

f0(k) ∝ 1
k cot δ(k)− ik

−→ a0 − ia2
0k − (a3

0 − a2
0r0/2)k2 +O(k3a3

0)

−→ 1− ikR − 2k2R2/3 +O(k3R3)

Easy for 2–2 scattering, but not for the many-body problem!

EFT approach: k � 1/R means we probe at low resolution
=⇒ replace potential with a simpler but general interaction
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EFT for “Natural” Short-Range Interaction

A simple, general interaction is a sum of delta functions and
derivatives of delta functions. In momentum space,

〈k|Veft|k′〉 = C0 +
1
2

C2(k2 + k′2) + C′
2k · k′ + · · ·

Or, Left has most general local (contact) interactions:

Left = ψ†
[
i
∂

∂t
+

−→
∇ 2

2M

]
ψ − C0

2
(ψ†ψ)2 +

C2

16

[
(ψψ)†(ψ

↔
∇2ψ) + h.c.

]
+

C′
2

8
(ψ

↔
∇ψ)† · (ψ

↔
∇ψ)− D0

6
(ψ†ψ)3 + . . .

Dimensional analysis =⇒ C2i ∼ 4π
M R2i+1 , D2i ∼ 4π

M R2i+4
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Feynman Rules for EFT Vertices

Left = ψ†
[
i
∂

∂t
+

−→
∇ 2

2M

]
ψ − C0

2
(ψ†ψ)2 +

C2

16

[
(ψψ)†(ψ

↔
∇2ψ) + h.c.

]
+

C′
2

8
(ψ

↔
∇ψ)† · (ψ

↔
∇ψ)− D0

6
(ψ†ψ)3 + . . .

P/2− k

P/2 + k

P/2− k′

P/2 + k′

= + + + · · ·

−i〈k′|VEFT|k〉 − iC0 −iC2
k2 + k′2

2
−iC ′2 k · k′

= + · · ·

−iD0
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Renormalization

Reproduce f0(k) in perturbation theory (Born series):

f0(k) ∝ a0 − ia2
0k − (a3

0 − a2
0r0/2)k2 +O(k3a3

0)

Consider the leading potential V (0)
EFT(x) = C0δ(x) or

〈k|V (0)
eft |k

′〉 =⇒ =⇒ C0

Choosing C0 ∝ a0 gets the first term. Now 〈k|VG0V |k′〉:

Dick Furnstahl Fermion Many-Body Systems I
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〈k|V (0)
eft |k

′〉 =⇒ =⇒ C0

Choosing C0 ∝ a0 gets the first term. Now 〈k|VG0V |k′〉:

=⇒
∫

d3q
(2π)3

1
k2 − q2 + iε

−→∞!

=⇒ Linear divergence!
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Renormalization

Reproduce f0(k) in perturbation theory (Born series):

f0(k) ∝ a0 − ia2
0k − (a3

0 − a2
0r0/2)k2 +O(k3a3

0)

Consider the leading potential V (0)
EFT(x) = C0δ(x) or

〈k|V (0)
eft |k

′〉 =⇒ =⇒ C0

Choosing C0 ∝ a0 gets the first term. Now 〈k|VG0V |k′〉:

=⇒
∫ Λc d3q

(2π)3

1
k2 − q2 + iε

−→ Λc

2π2 −
ik
4π

+O(k2/Λc)

=⇒ If cutoff at Λc , then can absorb into C0, but all powers of k2
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Renormalization

Reproduce f0(k) in perturbation theory (Born series):

f0(k) ∝ a0 − ia2
0k − (a3

0 − a2
0r0/2)k2 +O(k3a3

0)

Consider the leading potential V (0)
EFT(x) = C0δ(x) or

〈k|V (0)
eft |k

′〉 =⇒ =⇒ C0

Choosing C0 ∝ a0 gets the first term. Now 〈k|VG0V |k′〉:

=⇒
∫

dDq
(2π)3

1
k2 − q2 + iε

D→3−→ − ik
4π

Dimensional regularization with minimal subtraction
=⇒ only one power of k !
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Dim. reg. + minimal subtraction =⇒ simple power counting:

P/2− k

P/2 + k

P/2− k′

P/2 + k′

= +

iT (k, cos θ) − iC0 − M

4π
(C0)

2k

+ + + + O(k3)

+i

(
M

4π

)2

(C0)
3k2 − iC2k

2 − iC ′2k2 cos θ

Matching: C0 = 4π
M a0 = 4π

M R , C2 = 4π
M

a2
0r0
2 = 4π

M
R3

3 , · · ·

Recovers expansion order-by-order with perturbative diagrams
one power of k per diagram, natural coefficients
estimate truncation error from dimensional analysis
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“Simple” Many-Body Problem: Hard Spheres

Infinite potential at radius R

0 R

sin(kr+δ)

r

Scattering length a0 = R

Dilute nR3 � 1 =⇒ kFa0 � 1

What is the energy / particle?

k F

R

1/~
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Noninteracting Fermi Sea at T = 0

Put system in a large box (V = L3) with periodic bc’s
spin-isospin degeneracy ν (e.g., for nuclei, ν = 4)
fill momentum states up to Fermi momentum kF

N = ν

kF∑
k

1 , E = ν

kF∑
k

~2k2

2M

Note:
∫

F (k) dk ≈
∑

i F (ki)∆ki =
∑

i F (ki)
2π
L ∆ni = 2π

L

∑
i F (ki)

In 1-D:

N = ν
L

2π

∫ +kF

−kF

dk =
νkF

π
L =⇒ n =

N
L

=
νkF

π
;

E
L

=
1
3

~2k2
F

2M
n

In 3-D:

N = ν
V

(2π)3

∫ kF

d3k =
νk3

F

6π2 V =⇒ n =
N
V

=
νk3

F

6π2 ;
E
V

=
3
5

~2k2
F

2M
n

Volume/particle V/N = 1/n ∼ 1/k3
F , so spacing ∼ 1/kF
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Sum Over Fermions in the Fermi Sea

Leading order V (0)
EFT(x) = C0δ(x)

=⇒ ELO =
C0

2
ν(ν − 1)

(
kF∑
k

1

)2

∝ a0k6
F

At the next order, we get a linear divergence again:

=⇒ ENLO ∝
∫ ∞

kF

d3q
(2π)3

C2
0

k2 − q2

Same renormalization fixes it! Particles −→ holes∫ ∞

kF

1
k2 − q2 =

∫ ∞

0

1
k2 − q2−

∫ kF

0

1
k2 − q2

D→3−→ −
∫ kF

0

1
k2 − q2 ∝ a2

0k7
F
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Feynman Rules for Hugenholtz Diagrams

Ground-state energy density E is sum of Hugenholtz diagrams
same vertices as free space (same renormalization!)

Feynman rules:
1. Each line is assigned conserved k̃ ≡ (k0, ~k) and

iG0(k̃)αβ = iδαβ

(
θ(k − kF)

k0 − ω~k + iε
+

θ(kF − k)

k0 − ω~k − iε

)
.

2.
α

β

γ

δ

−→ (δαγδβδ + δαδδβγ) (spin-independent)

3. After spin summations, δαα → −g in every closed fermion loop.
4. Integrate

∫
d4k/(2π)4 with eik00+

for tadpoles
5. Symmetry factor i/(S

∏lmax

l=2(l!)
k ) counts vertex permutations

and equivalent l–tuples of lines
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Power Counting

Power counting rules
1. for every propagator: M/k2

F
2. for every loop integration: k5

F/M
3. for every n–body vertex with 2i derivatives: k2i

F /MΛ2i+3n−5

Diagram with V n
2i n–body vertices of each type scales as (kF)

β:

β = 5 +
∞∑

n=2

∞∑
i=0

(3n + 2i − 5)V n
2i .

e.g., =⇒ V 2
0 = 2

=⇒ β = 5 + (3 · 2 + 2 · 0− 5) · 2 = 7 =⇒ O(k7
F)
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T = 0 Energy Density from Hugenholtz Diagrams

O
(
k6

F

)
:

O
(
k7

F

)
: +

O
(
k8

F

)
: +

+ +

+

E
V

= n
k2

F

2M

[
3
5

+ (ν − 1)
2

3π
(kFa0)

+ (ν − 1)
4

35π2 (11− 2 ln 2)(kFa0)
2

+ (ν − 1)
(
0.076 + 0.057(ν − 3)

)
(kFa0)

3

+ (ν − 1)
1

10π
(kFr0)(kFa0)

2

+ (ν + 1)
1

5π
(kFap)

3 + · · ·

]
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T = 0 Energy Density from Hugenholtz Diagrams

O
(
k6

F

)
:

O
(
k7

F

)
: +

O
(
k8

F

)
: +

+ +

+

E
V

= n
k2

F

2M

[
3
5

+ (ν − 1)
2

3π
(kFa0)

+ (ν − 1)
4

35π2 (11− 2 ln 2)(kFa0)
2

+ (ν − 1)
(
0.076 + 0.057(ν − 3)

)
(kFa0)

3

+ (ν − 1)
1

10π
(kFr0)(kFa0)

2

+ (ν + 1)
1

5π
(kFap)

3 + · · ·

]

Dick Furnstahl Fermion Many-Body Systems I



Outline Intro EFT Dilute Summary Refs Spheres

T = 0 Energy Density from Hugenholtz Diagrams
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T = 0 Energy Density from Hugenholtz Diagrams
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T = 0 Energy Density from Hugenholtz Diagrams
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Looks Like a Power Series in kF! Is it?

New logarithmic divergences in 3–3 scattering

+ ∝ (C0)
4 ln(k/Λc)

Changes in Λc must be absorbed by 3-body coupling D0(Λc)
=⇒ D0(Λc) ∝ (C0)

4 ln(a0Λc) + const. [Braaten & Nieto]

d
dΛc

[
� �

]
= 0 =⇒ same coefficient!

What does this imply for the energy density?

O
(
k9

F ln(kF)
)

: + + · · · ∝ (ν − 2)(ν − 1) (kFa0)
4 ln(kFa0)
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Effective Field Theory Ingredients

See “Crossing the Border” [nucl-th/0008064]

1. Use the most general L with low-energy dof’s consistent with
global and local symmetries of underlying theory

Left = ψ†
[
i ∂
∂t + ∇ 2

2M

]
ψ − C0

2 (ψ†ψ)2 − D0
6 (ψ†ψ)3 + . . .

2. Declaration of regularization and renormalization scheme
natural a0 =⇒ dimensional regularization and minimal subtraction

3. Well-defined power counting =⇒ small expansion parameters

use the separation of scales =⇒ kF
Λ with Λ ∼ 1/R =⇒ kFa0, etc.

O
(
k6

F

)
: O

(
k7

F

)
: +

E = ρ
k2

F

2M

[
3
5

+
2

3π
(kFa0) +

4
35π2 (11− 2 ln 2)(kFa0)

2 + · · ·
]
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(Nuclear) Many-Body Physics: “Old” vs. “New”

One Hamiltonian for all
problems and energy/length
scales

Infinite # of low-energy
potentials; different resolutions
=⇒ different dof’s and
Hamiltonians

Find the “best” potential There is no best potential
=⇒ use a convenient one!

Two-body data may be
sufficient; many-body forces as
last resort

Many-body data needed and
many-body forces inevitable

Avoid divergences Exploit divergences

Choose diagrams by “art” Power counting determines
diagrams and truncation error
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Web Resources

These lectures, including additional notes on each slide, are
available at
http://www.physics.ohio-state.edu/˜ntg/NPSS/

Class notes for a two-quarter course on “Nuclear Many-Body
Physics” given by Dick Furnstahl and Achim Schwenk are
available at
http://www.physics.ohio-state.edu/˜ntg/880/
(username: physics, password: 880.05)
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References for Many-Body Physics

A.L. Fetter and J.D. Walecka, “Quantum Theory of Many-Particle Systems.” Classic text, but pre-path integrals. Now
available in an inexpensive (about $20) Dover reprint. Get it!

J.W. Negele and H. Orland, “Quantum Many-Particle Systems.” Detailed and careful use of path integrals. Full of good
physics but most of the examples are in the problems, so it can be difficult to learn from.

N. Nagaosa, “Quantum Field Theory in Condensed Matter Physics.” Recent text, covers path integral methods and
symmetry breaking.

A.M. Tsvelik, “Quantum Field Theory in Condensed Matter Physics.” Good on one-dimensional systems.

M. Stone, “The Physics of Quantum Fields.” A combined introduction to quantum field theory as applied to particle
physics problems and to nonrelativistic many-body problems. Some very nice explanations.

R.D. Mattuck, “A Guide to Feynman Diagrams in the Many-Body Problems.” This is a nice, intuitive guide to the
meaning and use of Feynman diagrams.

N. Goldenfeld, “Lectures on Phase Transitions and the Renormalization Group.” The discussion of scaling, dimensional
analysis, and phase transitions is wonderful.

G.D. Mahan, “Many-Particle Physics.” Standard, encyclopedic reference for condensed matter applications.

P. Ring and P. Schuck, “The Nuclear Many-Body Problem.” Somewhat out of date, but still a good, encyclopedic guide
to the nuclear many-body problem. Doesn’t discuss Green’s function methods much and no path integrals.

K. Huang, “Statistical Mechanics.” Excellent choice for general treatment of statistical mechanics, with good sections
on many-body physics.

Dick Furnstahl Fermion Many-Body Systems I



Outline Intro EFT Dilute Summary Refs

References for Many-Body Effective Field Theory
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Fermi to Dyson in 1953 [recalled in Nature 427 (2004) 297]

Concerning a proposed pseudoscalar meson theory:

“There are two ways of doing calculations in theoretical
physics”, he said. “One way, and this is the way I prefer, is to
have a clear physical picture of the process that you are
calculating. The other way is to have a precise and
self-consistent mathematical formalism. You have neither.”
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Fermi to Dyson in 1953 [recalled in Nature 427 (2004) 297]

I was slightly stunned, but ventured to ask him why he did
not consider the pseudoscalar meson theory to be a
self-consistent mathematical formalism. He replied,
“Quantum electrodynamics is a good theory because the
forces are weak, and when the formalism is ambiguous we
have a clear physical picture to guide us. With the
pseudoscalar meson theory there is no physical picture, and
the forces are so strong that nothing converges. To reach
your calculated results, you had to introduce arbitrary cut-off
procedures that are not based either on solid physics or on
solid mathematics.”
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