Microscopic interpretation of the excited $K^{\pi} = 0^+$, 2⁺ bands of deformed nuclei

Gabriela Popa Rochester Institute of Technology

> Collaborators: J. P. Draayer Louisiana State University J. G. Hirsch UNAM, Mexico A. Georgieva Bulgarian Academy of Science

Outline

Introduction

What we know about the nucleus Characteristic energy spectra • Theoretical Model Configuration space System Hamiltonian • Results

Conclusion and future work

Chart of the nuclei

N (number of neutrons)

Nuclear Physics Summer School June 15-27, 2003

NPSC-2003

Schematic level schemes of spherical and deformed nuclei

Experimental energy levels

Experimental energy spectra of ¹⁶²Dy

NPSC-2003

Particle distribution

Valence space: $U(\Omega_{\pi}) \otimes U(\Omega_{\nu})$

total	normal	unique
$\Omega_{\pi}=32$	$\Omega^n_{\pi} = 20$	$\Omega^{u}_{\pi}=12$
$\Omega_{v} = 44$	$\Omega^n_{\nu} = 30$	$\Omega_{\nu}^{u} = 14$

disti	ributi	ons:				(λ	,μ)	
prot	tons:		neuti	rons:		π	v t	otal
10	6	4	10	6	4	(12,0)	(18,0)	(30, 0)
12	6	6	12	6	6	(12,0)	(18,0) (30, 0)
14	8	6	14	8	6	(10,4)	(18,4)) (28, 4)
16	10	6	16	10	6	(10,4)	(20,4) (30, 4)
18	10	8	18	10	8	(10,4)	(20,4)) (30, 4)
20	12	8	20	12	8	(36,0)	(12,0) (24, 0)
22	14	8	22	14	8	(8,30)) (0,12	(8, 18)
	distr prov 10 12 14 16 18 20 22	distributiprotons:1061261481610181020122214	distributions:protons:1061261261481610181020122214	distributions: neutrons: protons: neutrons: 10 6 4 10 12 6 6 12 14 8 6 14 16 10 6 16 18 10 8 18 20 12 8 20 22 14 8 22	distributions:neutrons:protons:neutrons:106410610126614816106181082012822148	distributions:protons:neutrons:106412661266148616106181082012822148	distributions: (λ) protons:neutrons: π 10641064(12,0)12661266(12,0)14861486(10,4)1610616106(10,4)1810818108(10,4)2012820128(36,0)2214822148(8,30)	distributions: (λ,μ) protons:neutrons: π ν t10641064(12,0)(18,0)12661266(12,0)(18,0)14861486(10,4)(18,4)1610616106(10,4)(20,4)1810818108(10,4)(20,4)2012820128(36,0)(12,0)2214822148(8,30)(0,12)

NPSC-2003

Wave Function

$$|\psi_{\gamma}\rangle = \sum C^{\gamma}_{i} |\phi_{i}\rangle$$
$$|\phi_{i}\rangle = |\{\alpha_{\pi}; \alpha_{\nu}\} \rho(\lambda,\mu) \text{KL S; JM}\rangle$$
$$\alpha_{\sigma} (\sigma = \pi, \nu) = n_{\sigma} [f_{\sigma}] (\lambda_{\sigma}, \mu_{\sigma}), S_{\sigma}$$
$$(\lambda_{\pi}, \mu_{\pi}) \mathbb{P} (\lambda_{\nu}, \mu_{\nu}) = \sum (\lambda, \mu)^{\rho}$$

Direct Product Coupling

Coupling proton and neutron irreps to total (coupled) SU(3):

$$(\lambda_{\pi}, \mu_{\pi}) \otimes (\lambda_{\nu}, \mu_{\nu})$$

$$\rightarrow \qquad (\lambda_{\pi} + \lambda_{\nu}, \mu_{\pi} + \mu_{\nu})$$

$$+ \qquad (\lambda_{\pi} + \lambda_{\nu} - 2, \mu_{\pi} + \mu_{\nu} + 1)$$

$$+ \qquad (\lambda_{\pi} + \lambda_{\nu} + 1, \mu_{\pi} + \mu_{\nu} - 2)$$

$$+ \qquad (\lambda_{\pi} + \lambda_{\nu} - 1, \mu_{\pi} + \mu_{\nu} - 1)^{2}$$

$$+ \qquad \dots$$

 $\rightarrow \Sigma_{m,l} \oplus (\lambda_{\pi} + \lambda_{\nu} - 2m + l, \mu_{\pi} + \mu_{\nu} + m - 2l)^k$

with the multiplicity denoted by k = k(m,l)

NPSC-2003

21st SU(3) irreps corresponding to the highest C₂ values were used in ¹⁶⁰Gd

$(\lambda_{\pi},\mu_{\pi})$	(λ_{v},μ_{v})	(λ,μ)							
(10,4)	(18,4)	(28,8)	(29,6)	(30,4)	(31,2)	(32,0)	(26,9)	(27,7)	
(10,4)	(20,0)	(30,4)							
(10,4)	(16,5)	(26,9)	(27,7)						
(10,4)	(17,3)	(27,7)							
(12,0)	(18,4)	(30,4)							
(12,0)	(20,0)	(32,0)							
(8 <i>,</i> 5)	(18,4)	(26,9)	(27,7)						
(9,3)	(18,4)	(27,7)							
(7,7)	(18,4)	(25,11)	(26,9)	(27,7)					
(7,7)	(20,0)	(27,7)							
(4,10)	(18,4)	(22,14)							

Tricks

$$H = H_{sp}^{\pi} + H_{sp}^{\nu} + G_{\pi} H_{P}^{\pi} + G_{\nu} H_{P}^{\nu} + \chi Q \cdot Q$$
$$+ a L^{2} + b K_{J}^{2} + a_{sym} C_{2} + a_{3} C_{3}$$

Parameters of the Pseudo-SU(3) Hamiltonian

From systematics: $\chi = 35/A \, {}^{5/3} \, \text{MeV}$ $G_{\pi} = 21/A \, \text{MeV}$ $G_{\nu} = 19/A \, \text{MeV}$ $h\omega = 41/A \, {}^{1/3} \, \text{MeV}$

 $\kappa_{\pi} = 0.0637 \quad \mu_{\pi} = 0.60$ $\kappa_{\nu} = 0.0637 \quad \mu_{\nu} = 0.60$

Fit to experiment(fine tuning): a, b, a_{sym} and a₃

coef./nucleus	¹⁵² Nd	156 Sm	160 Gd	¹⁶⁴ Dy	168 Er	172 Yb	176 Hf
$\chi \times 10^{-3}$	8.0	7.74	7.42	7.12	6.84	6.58	6.33
G_{π}	0.138	0.135	0.131	0.128	0.125	0.122	0.119
$G_{ u}$	0.112	0.109	0.106	0.104	0.101	0.099	0.097
$a_3 \times 10^{-4}$	2.57	2.59	1.93	0.65	0.75	0.31	0.43
a	0.000	0.000	0.001	-0.001	-0.002	-0.001	-0.007
b	0.00	0.55	0.153	0.042	0.022	0.12	0.3
a_s	0.0000	0.0000	0.0035	0.0008	0.0008	0.001	0.006

NPSC-2003

NPSC-2003

 $\rightarrow \sum_{m,l} \oplus (\lambda_{\pi} + \lambda_{\nu} - 2m + l, \mu_{\pi} + \mu_{\nu} + m - 2l)^{k}$

\bigstar... Orientation of the π - ν system is quantized with the multiplicity denoted by k = k(m,l)

NPSC-2003

M1 Transition Strengths $[\mu^2_N]$ in the Pure Symmetry Limit of the Pseudo SU(3) Model

Nucleus	$(\lambda_{\pi}\mu_{\pi})$	$(\lambda_{v}\mu_{v})$	λμ)	$(\lambda \mu)_{1^+}$	B(M1)	mode
¹⁶⁰ , ¹⁶² Dy	(10,4)	(18,4)	(28,8)	(29,6)	0.56	t
				(26, 9) $(27; 7)^{1}$	1.77	s s+t
¹⁶⁴ Dy	(10,4)	(20,4)	(30,8)	(27;7)2 (31,6)	0.083 0.56	t+s t
				(28,9) (29,7)	1.83 1.88	s s+t
				(29,7)	0.09	t+s

Energy levels of ¹⁶⁴Dy

Energy Levels of ¹⁶⁸Er

Total B(M1) strength (μ_N^2)

Nucleus	B(M1)[<mark>µ_N²]</mark>						
		Calculated					
	Experiment	Pure SU(3)	Theory				
¹⁶⁰ Dy	2.48	4.24	2.32				
¹⁶² Dy	3.29	4.24	2.29				
¹⁶⁴ Dy	5.63	4.36	3.05				

First excited K=0⁺ and K=2⁺ states

NPSC-2003

NPSC-2003

Conclusions

ground state, γ , first and second excited K = 0⁺ bands well described by a few representations

- •calculated results in good agreement with the lowenergy spectra
- •B(E2) transitions within the g.s. band well reproduced

•1⁺ energies fall in the correct energy range

•fragmentation in the B(M1) transition probabilities correctly predicted

Conclusions

A microscopic interpretation of the relative position of the collective band, as well as that of the levels within the band, follows from an evaluation of the primary SU(3) content of the collective states. The latter are closely linked to nuclear deformation.

• If the leading configuration is triaxial (nonzero μ), the ground and γ bands belong to the same SU(3) irrep;

• if the leading SU(3) configuration is axial (μ =0), the K =0 and γ bands come from the same SU(3) irrep.

•A proper description of collective properties of the first excited $K^{\pi} = 0^+$ and $K=2^+$ states must take into account the mixing of different SU(3)-irreps, which is driven by the Hamiltonian.

Future work

- In some nuclei total strength of the M1 distribution is larger than the experimental value
- is larger than the experimental value
 Consider the states with J = 1 in the configuration space
- Consider the abnormal parity levels
- There are new experiments that determine the interband B(E2) transitions
 - Improve the model to calculate these transitions

- •Investigate the M1 transitions in light nuclei
- •Investigate the energy spectra in super-heavy nuclei

