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Low-lying structure – The interacting Shell Model

• The interacting shell model is one of the most powerful tools 
available too us to describe the low-lying structure of light nuclei

• We start at the usual place:

• Construct many-body states |φi〉 so that

• Calculate Hamiltonian matrix Hij=〈φj|H|φi〉
— Diagonalize to obtain eigenvalues

The picture can't be displayed.
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The picture can't be displayed.
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We want an accurate description of low-lying states

The picture can't be displayed.
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Nuclear structure with NN-interaction

• NN-interaction determined from scattering and the deuteron
— Argonne, Bonn, Paris, Reid, etc.

Problem: Repulsion in strong interaction → Infinite space!

Phase shift and potential in 1S0 channel

Strong repulsion at ~ 0.5 fm
〈ψj|H|ψi〉 large
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Can we get around this problem?
Effective interactions

• Choose subspace of      for a calculation (P-space)
— Include most of the relevant physics 
— Q -space (excluded - infinite)

• Effective interaction:

— Two approaches:
– Bloch-Horowitz 

– Lee-Suzuki:
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Effective interactions permit first-principles 
shell-model applications

• Impossible problem → Difficult problem
— Two, three, four, … A-body operators 

– Compromise between size of P-space and number of clusters
– Three-body clusters

Q

P

               +++
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The general idea behind effective interactions

Heff QXHX-1P=0
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Exact reproduction 
of N eigenvalues

Heff has one-, two, 
three-, … A-body 
terms
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Interactions in real-world applications

• Ideally, we would like to use these fundamental interactions in our 
theory calculations

• In most cases this is not really practical as the the NN-interaction has 
a very strong repulsive core at short distances

— This means that in many-body applications an infinite number of states are 
needed as states can be scattered to high-energy intermediate states

• We need to use effective interactions
— Derived from some formal theory

– This is in principle possible and is difficult. But it is becoming practical now for 
light nuclei

— Assume they exist as the formal theory stipulates and determine it 
empirically to reproduce data

– This has permitted many studies in nuclear structure to go forward
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Shell model applications 

• The practical Shell Model
1. Choose a model space to be used for a range of nuclei

– E.g., the 0d and 1s orbits (sd-shell) for 16O to 40Ca or the 0f and 1p orbits for 
40Ca to 120Nd

2. We start from the premise that the effective interaction exists
3. We use effective interaction theory to make a first approximation (G-

matrix)
4. Then tune specific matrix elements to reproduce known experimental 

levels
5. With this empirical interaction, then extrapolate to all nuclei within the 

chosen model space
6. Note that radial wave functions are explicitly not included, so we add 

them in later

The empirical shell model works well!
But be careful to know the limitations!
More on exact treatments later.
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The Shell Model

• We write the Hamiltonian as

• Start with closed inner core, e.g., 
for 24Mg, close the p-shell

• Active valence particles in a 
computationally viable model 
space, e.g., the 0d5/2, 0d3/2, 1s1/2
orbits for 24Mg

The picture can't be displayed.

0s N=0

0d1s N=2

0f1p N=4

1p N=1

Closed core.
No excitations of the 
core allowed!

Allow all configurations 
in the valence space

No excitations up here

•Single-particle energy εi

•Two-body residual interactions
Energy is relative to 16O core
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Building the shell-model basis states

• Need to construct the many-body basis 
states to calculate matrix elements of H

• Choose states with definite parity, Jz and 
Tz and let the Hamiltonian do the rest

— A very useful approach is a bit-
representation known as the M-scheme
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0d1s N=2

0f1p N=4

1p N=1
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Closed core.
No excitations of 
the core allowed!

A single integer represents a complicated Slater Determinant
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Basis states - How many are there?

• To do a calculation we need states with fixed Jz
— All J-values are contained in Jz=0 or Jz=1/2

• Counting the number of basis states
— Order-of-magnitude estimate 
— n particles, and Nsps single-particle states

– Nsps in the sd-shell = 12 (0d5/2=6, 0d3/2=4, 1s1/2=2)
– Nsps in the fp-shell = 20 (0f7/2=8, 0f5/2=6, 1p3/2=4, 1p1/2=2)

— Includes states of all J and Jz
– Number of Jz=0 divide by a factor of ten

• Number of states with a given J

The picture can't be displayed.

The picture can't be displayed.
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Tools of the trade - Lanczos

• Setup Hamiltonian matrix 〈j|H|i〉 and diagonalize
• Lanczos algorithm

— Bring matrix to tri-diagonal form

— nth iteration computes 2nth moment

– But you can’t find eigenvalues with calculated moments
— Eigenvalues converge to extreme (largest and smallest) values
— ~ 100-200 iterations needed for 10 eigenvalues (even for 108 states)
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Note that after each iteration, 
we need to re-orthogonalize!

The picture can't be displayed.

Prove that Lanczos computes 
moments -

The picture can't be displayed.
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Shell-model codes

• Oak Ridge (1969)
— Coefficients of Fractional 

parentage (CFP)

• Glasgow (1977)
— Good Jz (M-scheme)

– J restored in diagonalization
• OXBASH (1985)

— J-projected M-scheme
— Smaller matrices

• RITSSCHIL (1985)
— CFP

• DUSM (1989)
— Permutation groups

• ANTOINE (1991 & 1999)
— M-scheme
— Apply matrix on-the-fly
— Large dimensions

• NATHAN (1998)
— J-projected similar to ANTOINE
— “Hybrid” M-scheme-CFP code

• REDSTICK (now)
— Similar to ANTOINE
— M-scheme
— Three-body interactions
— Parallel architecture

The picture can't be displayed.
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REDSTICK – basis state ordering

• Ordering of basis states 
speeds up the calculation

• Need a FAST lookup scheme
• Construct proton and 

neutron many-body Slater 
determinants

— Order by Parity, Jz and Ω

For each proton SD store start in 
Lanczos vector: pos(i)
For each neutron SD store relative 
position in Jz, parity list: pos(j)
Position in Lanczos vector 
determined by summing two 
integers k= pos(i)+ pos(j)
Same algorithm can be used to sort 
and find two-body matrix elements

• Limits truncations
— Partition truncations not 

possible
• Much faster!
• Lanczos vector points to 

p & n SD’s (less memory)
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Lanczos vector
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• With large dimensions, it may be better not to pre-calculate and 
store the Hamiltonian matrix

• Find states connected by one-body proton or neutron operator 
• pn-part is the hardest

— Product of two one-body operators

– Pre-sort connections by one-body operators; store operator and phase

REDSTICK – Applying the Hamiltonian – pn part
On-the-fly

pnn
l

n
n

p
k

p
m vαβγδδγβα ννππ ΦΦΦΦ ++

Jump List #1 Jump List #2

Initial PN-SD

∑∑∑∑ Φ′=ΦΦΦ=Φ=
j

jj
j i

jiii
i

ii cHccHH ˆˆv

∑ ++=
ijkl

lkji
pn
ijkl

pn vH ννππˆ

• Loop over all initial proton-neutron SD’s 
Φi=φp

k φn
l

— For each φp
k loop over all φp

m connected by 
one-body operator

– For each φn
l loop over all φn

n connected by one-
body operator but limited in Jz, parity, and        by 
final proton state φp

m

– Update Lanczos vector: Position=pos(m)+pos(n)

Ω
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• Note loop over Ndim states
— Divide loop over NCPU independent processors 

– For load balance use do i=1,Ndim,NCPU

– Creates updated Lanczos vector on each processor
– Total Lanczos vector with Global sum

REDSTICK – Applying the Hamiltonian 
Parallel execution

• Loop over all initial proton-neutron SD’s 
Φi=φp

k φn
l steps of NCPU

— For each φp
k loop over all φp

m
connected by one-body operator

– For each φn
l loop over all φn

n
connected by one-body 
operator but limited in Jz, 
parity, and        by final proton 
state φp

m

– Update Lanczos vector: 
Position=pos(m)+pos(n)

Ω

• Loop over all initial proton-neutron SD’s 
Φi=φp

k φn
l steps of NCPU

— For each φp
k loop over all φp

m
connected by one-body operator

– For each φn
l loop over all φn

n
connected by one-body 
operator but limited in Jz, 
parity, and        by final proton 
state φp

m

– Update Lanczos vector: 
Position=pos(m)+pos(n)

Ω

• Loop over all initial proton-neutron SD’s 
Φi=φp

k φn
l steps of NCPU

— For each φp
k loop over all φp

m
connected by one-body operator

– For each φn
l loop over all φn

n
connected by one-body 
operator but limited in Jz, 
parity, and        by final proton 
state φp

m

– Update Lanczos vector: 
Position=pos(m)+pos(n)

Ω

• Loop over all initial proton-neutron SD’s 
Φi=φp

k φn
l steps of NCPU

— For each φp
k loop over all φp

m
connected by one-body operator

– For each φn
l loop over all φn

n
connected by one-body 
operator but limited in Jz, 
parity, and        by final proton 
state φp

m

– Update Lanczos vector: 
Position=pos(m)+pos(n)

Ω

• Loop over all initial proton-neutron SD’s 
Φi=φp

k φn
l steps of NCPU

— For each φp
k loop over all φp

m
connected by one-body operator

– For each φn
l loop over all φn

n
connected by one-body 
operator but limited in Jz, 
parity, and        by final proton 
state φp

m

– Update Lanczos vector: 
Position=pos(m)+pos(n)

Ω

• Loop over all initial proton-neutron SD’s 
Φi=φp

k φn
l steps of NCPU

— For each φp
k loop over all φp

m
connected by one-body operator

– For each φn
l loop over all φn

n
connected by one-body 
operator but limited in Jz, 
parity, and        by final proton 
state φp

m

– Update Lanczos vector: 
Position=pos(m)+pos(n)

Ω

Global Sum ~ NCPU speed up
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•

• Not that trivial (but also not the main bottleneck in the calculation)
• Let each processor be responsible for a sub set of Lanczos 

vectors written to disk
• Each processor has a copy of the current vector
• Accumulate sum overlaps                         on each node, n

• Global sum                   then                      and normalize

• Not quite the same as sequential reorthogonalization, but seems 
to work fine (also used in MFD).

REDSTICK – Reorthogonalization
Parallel execution
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Shell-model codes - Performance

REDSTICK or ANTOINE
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Simple application of the shell model

• A=18, two-particle problem with 16O core
— Two protons: 18Ne (T=1)
— One Proton and one neutron: 18F (T=0 and T=1)
— Two neutrons: 18O (T=1)

Example: 18O

• How many states for each Jz? How many states of each J?
— There are 14 states with Jz=0

– N(J=0)=3
– N(J=1)=2
– N(J=2)=5
– N(J=3)=2
– N(J=4)=2

Question # 1?
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Simple application of the shell model, cont.

Example:

Question #2

• What are the energies of the three 0+ states in 18O?
— Use the Universal SD-shell interaction (Wildenthal)

1845.21,0;001,0;00

3247.11,0;001,0;11

1246.21,0;111,0;11

0835.11,0;111,0;00

1856.31,0;001,0;00

8197.21,0;001,0;00

2/32/32/32/3

2/32/32/12/1

2/12/12/12/1

2/12/12/52/5

2/32/32/52/5

2/52/52/52/5

−=====

−=====

−=====

−=====

−=====

−=====

TJddVTJdd

TJddVTJss

TJssVTJss

TJssVTJdd

TJddVTJdd

TJddVTJdd

64658.1

16354.3

94780.3

2/3

2/1

2/5

0

1

0

=

−=

−=

d

s

d

ε

ε

ε

Measured relative to 16O core
Note 0d3/2 is unbound
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Simple application of the shell model, cont.

Example:

• Set up the Hamiltonian matrix
— We can use all 14 Jz=0 states, and 

we’ll recover all 14 J-states
— But for this example, we’ll use 

the two-particle J=0 states

Finding the eigenvalues

The picture can't be displayed.

0+ -12.171 0.000

-7.851 4.320

1.964 1.964

-1.616 10.555

-6.445 5.7263+

-8.389 3.781

-3.421 8.750

4+

-9.991 2.180

-7.732 4.440

-1.243 10.928

3.522 3.522

-2.706 9.465

2+

-1.348 10.823

-0.830 11.341
1+

|(0d5/2)2〉J=0 |(1s1/2)2〉J=0 |(0d3/2)2〉J=0
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The picture can't be displayed.

Hermitian effective interaction

The matrix 〈βP|Heff|αP〉 exactly reproduces dp solutions of 
the full problem

• Choose P-space for A-body calculation, with dimension dp
— P-space basis states:            and Q-space basis states:
— Need dP solutions, |k〉, in the “infinite” space, i.e.,
— Write X=e-ω

The picture can't be displayed.

The picture can't be displayed. The picture can't be displayed.

Effective interactions with the Lee-Suzuki method
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For an n-body cluster in Heff, we must first solve 
the n-body problem!

• Find Hn-eff iteratively
— n-particles bound in 

oscillator potential
• Steps:

— A=2
⇒ H2-eff

— Use H2-eff for A=3
⇒ H3-eff

— Use H3-eff for A=4
⇒ H4-eff
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Effective interactions really work

• 4He with the effective-field theory Idaho-A potential

•Effective interactions improve convergence!
•Are EFT potentials useful for nuclear-structure studies?
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But, we do need to use big computers

• Complex computational problem!
• Example: 10B, Nmax=4
• H3-eff

— 39,523,066 3-particle matrix elements
• 〈φj|H|φi〉 matrix dimension: 581,740 × 581,740 =1.7 × 1011

— Easy for H2-eff ~  1-2 CPU-hr for lowest ten states 
— H3-eff :

– 〈φj|H|φi〉 has 2.2 × 109 non-zero elements!
– > 100 CPU-hr

• Three-body effective interaction takes 24-48 hours
• True three-body interaction ~ 1 week
• The future:

— H3-eff with Nmax=6
— H4-eff with Nmax=4
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Binding energies with Av8’

Results with three-body effective interactions

400 keV

1.8 MeV, Clustering?

Oscillator parameter Model space

Three-body effective 
interactions represent a 
significant improvement 
and give results within 
400 keV of the GFMC
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Excitation spectra with NN-interactions

So far, things are 
looking pretty good!
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Excitation spectrum of 8Be

• Experiments hint at a 
new excited state in 8Be

— Excitation energy ~10-30 
MeV

• Previous theory studies 
were unable to predict 
the existence of such a 
state

• In large model spaces we 
find an intruder band

— model space 
and 2×108 basis states!

— No-core ANTIONE

Ω10
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Excitation spectrum of 8Be
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• What is the nature of this 
state?

— Is it real?
– Stable 0+, 2+, 4+ rotational 

band
–

– Ex appears to be stabilizing
– ~10-15 MeV

— Beta-vibration of the 
ground-state α−α cluster?

– Excitation energy seems 
too high

— Super-deformed prolate 
shape?

-1 MeV 1.11~ −I
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The NN-interaction clearly has problems

Note inversion of 
spins!

•The NN-interaction by itself does not describe nuclear 
structure
•Also true for A=11
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How about the three-body interaction?

∆

• Tucson-Melbourne 



32

Three-body interaction in a nucleus

The three-nucleon interaction plays a critical
role in determining the structure of nuclei
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More on three-body interactions in a nucleus

• Gamow-Teller  and M1 
transitions

— Sensitive to spin-orbit force
— Because στ is a generator of 

SU(4) and transitions in 
different representations are 
forbidden, i.e., B(GT)=0!! 

— NN-interaction tends to 
preserve SU(4)

— Spin-orbit breaks SU(4)

The three-nucleon interaction has a strong spin-
orbit component
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Summary of ab initio studies

• Extensions and improvements:
— Determine the form of the NNN-interaction
— Implementation of effective operators for transitions
— Four-body effective interactions
— Effective field-theory potentials; are they any good for structure?
— Integrate the structure into some reaction models (R-matrix)

• Questions and open problems to be addressed:
— Is it possible to improve the mean field?
— Can we improve the convergence of the higher          states?
— Unbound states. Can we use a continuum shell model?
— How high in A can we go?
— Can we use this method to derive effective interactions for 

conventional nuclear structure studies?

Ω

• Significant progress towards an exact understanding of nuclear 
structure is being made!

• These are exciting times!!
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