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 The Particle Properties of the Neutron
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 Neutron Decay

 Neutron-Nucleon Weak Interaction

 The Neutron Electric Dipole Moment
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Introduction to Cold & “Ultra-Cold” Neutrons
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Neutron “Guides” can be assembled
from neutron “mirrors”
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Neutron “Guides” are Used to Extract and Transport “Cold Neutrons

Photo courtesy of 
FRM-II Reactor
(Munich, Germany)
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Reflectivity of Neutron Mirror

A Simple Neutron Mirror has Nearly Unit Reflectivity 
Up to  a Maximum Critical Angle
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A Multilayer can add “Psuedo” Bragg Peak
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Additional Multilayers add More Peaks
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The “Supermirror” Extends the “Effective” θcritical
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~ 1000 layers

Commercial Supermirror Neutron Guides 
are Available With n ≅ 3 - 4

Since phase space goes as Θ2, Total Neutron Fluence goes as m2! 
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Neutron Polarization

Ferromagnetic Mirrors
Nuclear Spin Polarized 3He 
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NIST Polarized  3He Cell



National Nuclear Physics Summer School 18 June 2003 18

Spin Polarized  3He can Serve as a Neutron Spin Filter

Accurate determination of the Neutron Polarization from 
first principles is difficult as it requires requires detailed
Knowledge of thickness of cell, pressure in cell, 
3He polarization, …
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Neutron Polarization is Simply Related to Transmission

Pn =  1 – T2/T2

Where T0 is the transmission with the cell unpolarized 
and T is the transmission with the cell polarized.

Greene, Thompson,Dewey, A356, 177, (1994) 

0

The application of few hyperbolic trigonometric identities 
provides a greatly simplified relation for the neutron 
polarization that is based only on (relatively) easy to measure 
Neutron transmission:
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The Parametric relation for Pn has been verified

D. R. Rich, et.al., Nucl. Instrum. Meth., A481,431 (2002)

This has been verified 
at the level of ~0.2%, 
and should be capable of 
much better accuracy.
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A Brief Review of the

The Particle Properties of the Neutron
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Some Neutron Properties

√ Mass
√ Gravitational Mass (equivalence principle test)

√ Charge (limit on neutrality)
√ Magnetic Dipole Moment
√ Electric Dipole Moment
√ Magnetic Monopole

Electric Polarizability
√ Internal Charge Distribution

√ Lifetime
√ Decay Correlations
√ Rare Decay Modes

Spin (S)
Intrinsic Parity (P) √ Denotes application for Cold/Ultra-Cold Neutrons
Isospin (I)
Baryon Number (B)
Strangeness (S)
…
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The Neutron Mass
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Determination of the Neutron Mass

The best determination of the neutron mass considers the reaction:

n + p → d + γ

and measures two quantities with high accuracy:

1. A gamma ray energy
The actual experiment is an absolute determination of 
the 2.2MeV gamma ray wavelength in terms of the SI meter.

2. A mass difference
The actual experiment is the determination of the D - H mass
difference in atomic mass units.
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Determination of the Neutron Mass

λ* = 5.573 409 78(99) x 10-13 meters
E. G. Kessler, et. al., Phys Lett A, 255 (1999)

M(D) - M(H) = 1.006 276 746 30(71)  atomic mass units (u)
F. DiFilippo, et. al., Phys Rev Lett, 73 (1994)

which gives

M(n) = 1.008 664 916 37(99)  atomic mass units (u)
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Who cares about all those decimal places?



•



The Fine Structure Constant  from the Neutron Mass



The Fine Structure Constant  from the Neutron Mass



The Fine Structure Constant  from the Neutron Mass



The Fine Structure Constant  from the Neutron Mass



The Fine Structure Constant  from the Neutron Mass
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Equivalence Principle Test with Neutrons

The measurement of the neutron mass represents a 
determination of the neutron’s INERTIAL mass. To
determine the neutron’s GRAVITATIONAL mass, one 
must compare the free fall acceleration of the neutron 
with the acceleration g of macroscopic test masses:

Fn = mi an

mg g = mi an

mg / mi = an /g ≡ γ



See Schmiedmeyer, NIM A234 59 (1989)
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The Neutron Charge
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The Neutron Magnetic Moment



µn / µp = -0.68497935(17)

[Greene, et.al. Physics Letters, 71B, 297 (1977)]

The Neutron Magnetic Moment
Theory  Measurement                                                       

WHY IS THE AGREEMENT SO GOOD?
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Sources of Cold and Ultra Cold Neutrons
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 The neutrons produced in any high intensity source (Reactors 
or Accelerators) have energies in the MeV regime.

 These fast neutrons must be slowed down and “moderated”

 In a “Thermal” Source, neutrons are brought to thermal 
equilibrium with a moderator (usually H, D, or C).
– Thermal Neutrons T~300K     
– Cold Neutrons T~20K

 It is not practical to make a moderator that has a temperature 
comparable to Ultra-Cold Neutron Energies (100 neV~1 mK).
“Thermal” sources of UCN depend only on the very low energy 
tail of a Boltzman Distribution with 5meV~20K energy.
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Brief Introduction to 
Spallation Neutron Sources



(Courtesy of
Gary Russell)


[image: image1.wmf]



National Nuclear Physics Summer School 18 June 2003 45

Neutron Multiplicity in Spallation is High
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Moderators Thermalize the High Energy Neutrons

(Courtesy,Gary Russell)
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Comparison of Cold Neutron Facilities

Worldwide Beamlines for Fundamental Physics

Facility Rep Rate Guide Size Coating Time Averaged
(cm x cm) (x θc Ni ) Fluence (n/s)*

NIST CW 6 x 15 1 8 x 1010

ILL (PF1)     CW 6 x 12 1 1.5 x 1011

ILL (H113)   CW 6 x 20 3 1 x 1012

LANSCE      20Hz  10 x 10 3 2 x 1010

SNS 60Hz  10 x 10 3.5 3 x 1011

*VERY rough estimate good to within about x2, depends on experimental layout
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The Spallation Neutron Source
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The SNS Has Allocated a “Coupled” Cold Beam
for Fundamental Neutron Physics 
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SNS Construction is on Schedule for 2006 
Operation

photos, April 2003



National Nuclear Physics Summer School 18 June 2003 52

“Super Thermal”

Sources of Ultra Cold Neutrons
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Production of UCN from Cold Neutrons in 
Superfluid Helium
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Eucn = En – Ephonon

pucn = pn – qphonon
→ → →

•  Neutrons of energy E ≈ 0.95 meV
(11 K or 0.89 nm) can scatter in liquid
helium to near rest by emission of a
single phonon.

•  Upscattering (by absorption of an 11 K
phonon) ∝ Population of 11 K phonons
~ e–11K/Tbath
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The LANSCE Solid Deuterium UCN Source

Figure compliments of LANSCE
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Neutron Beta Decay
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Theoretical Framework for Neutron Decay
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Theoretical Implications the Neutron Beta-Decay Lifetime

Cosmology:
The neutron lifetime sets the time scale over which nucleosynthesis occurs 
during the Big-Bang. The comparison of the neutron lifetime, the 
cosmological He/H (or D/H) ratio, and the number of neutrino species 
provides a prediction for the Universal Baryon Density. This is a critical 
component of the “Dark Matter Problem.”

Astrophysics:
The reaction which provides the dominant source of energy in the Sun (pp 
fusion) is governed by the same matrix element as neutron decay. The 
neutron lifetime is a key parameter of the solar models which are involved in 
the “Solar Neutrino Problem” 

Particle Physics:
A comparison between the neutron lifetime and neutron decay correlations 
provides a unique test of the standard model, as well as providing an insight 
into the origin of parity violation.



Figure courtesy J.Last
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“After about three minutes, the cosmic 
hydrogen to helium ratio was fixed….

...Nothing of Interest has Happened Since”

Steven Weinberg
Lecture, Harvard University, 1975
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“After about three minutes, the cosmic 
hydrogen to helium ratio was fixed….

...Nothing of Interest has Happened Since”

Steven Weinberg
Lecture, Harvard University, 1975
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from THE NEW YORKER Aug 20, 2001
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from THE NEW YORKER Aug 20, 2001
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Particle Data Group 2002
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Neutron Lifetime vs. Year of Measurement
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Neutron Lifetime vs. Year of Measurement
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Measurement of the Neutron Lifetime
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Decay Protons are Trapped in the 
NIST  “Beam” Neutron Lifetime Experiment* 



National Nuclear Physics Summer School 18 June 2003 71

The Trap is “Opened” and the Emerging Protons are 
Accelerated and Detected

The trap volume (length) must be accurately known
in order to extract an absolute decay rate 
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NIST Variable Length Trap   Mk II
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Effective Trap Length by Extrapolation
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The Penning Trap for Decay Protons
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Image Courtesy of A. Serebrov
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S. N. Dzhosyuk, C. E. H. Mattoni, D. N. McKinsey, L. Yang and J. M. Doyle
Harvard University

P. R. Huffman and A. K. Thompson
NIST, Gaithersburg

R. Golub
HMI, Berlin

S. K. Lamoreaux, G. Greene
Los Alamos National Laboratory

K. J. Coakley
NIST, Boulder

Magnetic Trapping of Ultracold Neutrons
[P. Huffman, et. al,  Nature, 403, no.6765, 2000]
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Ioffe-Type Magnetic Trap
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figure courtesy J. Doyle
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Magnet form

Racetrack coil

Cupronickel tube

Acrylic lightguide

TPB-coated acrylic tube

Solenoid

Neutron shielding Collimator

Beam stop

Trapping region

figure courtesy J.Doyle
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Preliminary Trapped Neutron Decay Data

1000 2000 3000
Time (s)

W1 = a1 e–t/τ +C1
W2 = a2 e–t/τ +C2

Trapping data (blue)
a = 0.16 s–1 ± 0.03 s–1

C = 0.003 ± 0.007
τ = 660 s +290 s/–170 s

3He data (red)
a = –0.040 s–1 ± 0.045 s–1

C = –0.011 ± 0.011
τ = fixed at 750 s

Total number trapped:
N = 453 ± 100

Theory Predicts:
N = 500 ± 170
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Introduction to
Parity Violation in Neutron Decay

Parity Violation…Chance or Necessity?*

* See Democritos, circa 400 BCE 
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Some Domains of “Left-Handedness” in a Right-Handed World
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Broken Symmetry

A situation in which the ground state of a many-body
system (or the vacuum state of a relativistic quantum
field theory) has a lower symmetry than the Hamiltonian 
which defines the system.
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Some Characteristics of “Spontaneous Symmetry Breaking”

 There is an underlying symmetry to the system. 

 The physical state has lower symmetry than the 
underlying symmetry

 The symmetry breaking may not be complete.

 Incomplete symmetry breaking may be manifested by 
a residue of other symmetry states or domains in 
which the other symmetry is manifested
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Is this an Accident?
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Theoretical Framework for the Theory of Neutron Decay



National Nuclear Physics Summer School 18 June 2003 93

How to Include Parity Violation (“Handedness”)?

uγγγdeγγγνGH 5μμ5μμeweakweak −−= −}
“V-A”

Vector – Axial Vector
The V-A theory implies 
pure “left-handedness”
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Neutron Decay is Described by Two Parameters
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Correlations in Neutron Decay

Parity violation implies a rich phenomenology in neutron decay:

τ is the neutron lifetime

pe , pp , and pν are the momenta of the decay particles

σn is the spin of the neutron
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Correlation Coefficients in Neutron Decay 
can be Simply Related to Fundamental Couplings

Accurate Measurements of a, b, A, and B ,as well as the 
neutron lifetime, provide critical data for tests of the 
Standard Model.
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In the Electroweak Model, the vector current,
is conserved (along with electric charge) so 
the vector coupling constant gV is a “fundamental”
constant that can be determined from in several
ways. (0+→0+ decays, n-decay, CKM unitarity,…). 
Consistency between these determinations 
provides  a sensitive test of the Standard Model.
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Particle Data Group 2002
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figure courtesy F.Weidtfeldt
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Neutron Nucleon Weak Interaction
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Weak NN Interaction

• P-odd partial waves [5 S->P transition amplitudes]

• Meson exchange model for weak NN [effect of qq
weak interactions parametrized by ~6 couplings] 

• χ perturbation theory [Musolf&Holstein, under 
construction, incorporates chiral symmetry of QCD] 

• Physical description starting from Standard Model 
[need QCD in strong interaction regime, lattice+EFT 
extrapolation (Beane&Savage)]

N N

N N

Meson exchange

STRONG
(PC)

WEAK
(PNC)

Hweak

NN Interaction slides 
compliments of Mike Snow
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NN Interaction slides 

compliments of Mike Snow

What qq weak processes are hidden 
in the weak NN vertex?

• Non-negligible amplitudes from u,d,s sea quarks
• Sign cancellations among different contributions

“factorization” 
amplitude
[<N| Hweak|Nm>
~<0|qq|m><N|q γ5q|N>]

P-odd admixture into N

sea quarks

Valence
quarks

DDH

“disconnected” sea quarks 
from χ corrections [Zhu et al]
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NN Interaction slides 

compliments of Mike Snow

Meson Exchange Model (DDH)

Barton’s theorem [CP invariance forbids 
coupling between S=0 neutral mesons and on-
shell nucleons] restricts possible couplings

one consequence: pp parity violation blind to
weak pion exchange [need np system to probe 
Hweak

? I = 1]

weak meson exchange coupling constants
fπ , hr

0, hr
1, hρ

2, hω
0, hω

1

“should” suffice [but are chiral corrections 
large?]

N

N

PV

PC

π, ρ,ω

assumes p, r , and ω
exchange dominate the
low energy PNC NN potential
as they do for strong NN
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NN Interaction slides 

compliments of Mike Snow

Current Status of ? I = 0, 1 Weak NN

data from p-p, 133Cs anapole moment, and 18F are 
inconsistent, adding p-4He and 19F does not 
help [Haxton et al]  

odds are low for more progress in theory for PV in 
medium/heavy nuclei
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NN Interaction slides 

compliments of Mike Snow

PV Gamma Asymmetry in Polarized 
Neutron Capture

• Asymmetry Aγ of gamma angular distribution upon 
polarized neutron capture due to weak NN 
interaction [from sn•pγ]

• Aγ independent of neutron energy away from 
resonances

• 5x10-9 for Aγ in n+p->D+γ @ SNS (4 months)

• 1x10-7 for Aγ in n+D->T+γ @ SNS (4 months)  Pulsed SNS 
beam needed for systematic effects in n+D

n p

d

γ
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NN Interaction slides 

compliments of Mike Snow

PV Neutron Spin Rotation

• transversely polarized neutrons corkscrew due 
to weak NN interaction [opposite helicity
components of |↑>z=1/√2(|↑>x+ |↓>x) accumulate 
different phases from sn•pn term in forward 
scattering amplitude]

• PV rotation angle per unit length dφ/dx
approaches a finite limit for zero neutron energy 
[φ=(n-1)px, n-1=2πf/p2, fweak=gp ->dφ/dx~g]

• dφ/dx is constant for low energy neutrons

Circular
Components

Linear Polarization

Optical
Rotation

w

Medium with
circular birefringence

z

x
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NN Interaction slides 

compliments of Mike Snow

PV Neutron Spin Rotation in 4He and H

• only 4He and H have low A and negligible 
neutron spin-flip scattering (D difficult)

• precision goals for dφ/dx :

• 1x10-7 rad/m for n-4He @ NIST

• 1x10-7 rad/m for n-H @ SNS. Pulsed SNS beam
needed for systematic effects in n-H

s
s . pnpn

l

wPC + wPNC

s

s . Bext
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NN Interaction slides 

compliments of Mike Snow

Accuracies for NN weak couplings: 
few body systems add in 19F, 21Ne, 133Cs
fπ =4% fπ =3%
hr

0=7% hr
0=6%

hρ
2=34% hρ

2=28%
hω

0=26% hω
0=22%

assumes calculations of PV in few body systems 
are reliable (new pp and np calculations using

Argonne V18, CD-Bonn, Nijmegen-I by Carlson, 
Schiavilla et al insensitive to strong NN)

0.060.070.22-0.002-0.003hω
1

0.060.07-0.22-0.16-0.23hω
0
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2
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1

0.140.08-0.32-0.50-0.23hr
0

-0.34-0.970.92-3.12-0.11fπ

pα AzPp Aznα φnD Aγnp φnp Aγ
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1

0.060.07-0.22-0.16-0.23hω
0

0.030.05-0.25hρ
2

0.050.080.110.10-0.001hr
1

0.140.08-0.32-0.50-0.23hr
0

-0.34-0.970.92-3.12-0.11fπ

pα AzPp Aznα φnD Aγnp φnp Aγ
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The Neutron Electric Dipole Moment
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“It is generally assumed on the basis of some suggestive 
theoretical symmetry arguments that nuclei and elementary 
particle can have no electric dipole moments. It is the purpose 
of this note to point out that although these theoretical 
arguments are valid when applied to molecular and atomic 
moments whose electromagnetic origin is well understood, 
their extension to nuclei and elementary particles rests on 
assumptions not yet tested”

E.M.Purcell and N.F.Ramsey,
Physical Review 78, 807 (1950)
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An Electric Dipole Moment Violates T Non-Invariance

Wigner-Eckart Theorem implies that 
any vector quantity must be proportional 

to Angular Momentum

Eµ J


J


Eµ
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EDM Slides compliments of Martin Cooper
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 A non-zero permanent neutron electric dipole moment would 
be a direct violation of T-invariance and through the CPT a 
violation of CP

 An observed edm OR an improved limit will set important 
constraints on theories which seek to explain observed CP 
violation

 The next few orders of magnitude in sensitivity will be 
particularly interesting for theories that seek to explain the 
cosmological Baryon Asymmetry by CP violating processes 
during the first ~10-6 second of the Big Bang.
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EDM Slides compliments 
of Martin Cooper and

The EDM collaboration 

New Concept for Measurement of the Neutron EDM 
in a Superfluid Helium Bottle
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END
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