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Summary

Historical Introduction

Dirac Equation. E&M and Weak Int.

Non-VA forces in weak decays
 Measure e-ν correlation

Non-Unitarty of the CKM matrix
Isospin Breaking
Measure β asymmetry with UCN

Time-Reversal Invariance Violation
Measure TRIV correlation

Using the nucleus to search for new physics



The Weak Interaction: A Drama in 
Many Acts

 1890’s: Roentgen discovers β rays
Thought Uranium salts were affected by the sun but rainy Paris soon 

helped showing otherwise.

 1920’s: Pauli proposes ν
To explain continuous β spectrum: only way to save conservation of 

energy.

 1950’s Parity Violation 
To explain identical properties of θ and τ particles. Then clearly proven 

in Madame Wu’s experiment.

 1960’s CP-Violation



Parity Violation

 x  -x
 p  -p
 r×p  r×p
 J  J

Parity Mirror

In a Parity-symmetric world we 
would see as many electrons 
emitted in the direction of J as 

opposite J.

Madame Wu’s experiment: 
Polarize 60Co and look at the direction of the emitted β’s. 
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pe



Parity Violation

 x  -x
 p  -p
 r×p  r×p
 J  J

Parity Mirror

But in the  real world we see 
only electrons emitted in the 

direction opposite J.

Madame Wu’s experiment: 
Polarize 60Co and look at the direction of the emitted β’s. 

pe



Parity Violation

 x  -x
 p  -p
 r×p  r×p
 J  J

Parity Mirror

In a Parity-symmetric world
we would see as many ν’s 
with left-handed helicity (p

opposite S) as right-handed 
helicity (p parallel to S).

Other experiments: 
Look at the helicity of neutrinos. 

pν

Sν

pν

Sν



Parity Violation

 x  -x
 p  -p
 r×p  r×p
 J  J

Parity Mirror

But in the  real  world we see 
as only ν’s with left-handed 

helicity (p oppsite S).

Other experiments: 
Look at the helicity of neutrinos. 

pν

Sν



Schroedinger Equation
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How do we get a wave equation that yields conservation of energy and
the correct deBroglie relations between particles and associated waves?

p k= 
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the correct deBroglie relations between particles and associated waves?
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Schroedinger Equation: perturbation theory
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Schroedinger Equation: decaying rate

If V(x) is time-independent:
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The transition probability per unit time:

In a decay, like np e ν  we have to sum over final states
FERMI’s golden rule:                                                         
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Examples of  phase-space calculations
Using the neutron mean-life (τ ≈ 900 s) estimate the anti-neutrino
absorption cross section on protons ν+p  n+e+:                        
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Dirac Equation
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How do we get a wave equation that is relativistically correct?

Dirac showed that one can start with a linear equation

for which the coefficients 
and the wave function can 

not be simply scalars
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Dirac Equation
The matrices alphas have to be at minimum of dimension 4:

α
σ

σ

β

i
i

i
=











=
−











0
0

1 0
0 1

σ σ σx y z

i
i=







 =

−





 =

−








0 1
1 0

0
0

1 0
0 1

where      are the Pauli matricesσ i

The wave function now has 4 components. For a free particle with p=0:
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We write it in terms of 2-comp spinors. For a free particle with p=0:

For p ≠ 0:
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Dirac Eq. and E&M

γ βµ
µp mΨ Ψ+ = 0

Dirac Equation without E&M

with E&M (for electron)
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This is equivalent to the previous plus an interaction:



Quantizing the fields
Schroedinger Equation
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Quantizing the fields
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Quantizing the fields

The various wave functions are generated by applying 
the creator operator on the vacuum state:
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Current-current interaction
E&M interaction in Dirac’s Equation
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The vector potential should satisfy Maxwell’s equations: 
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e 

e 

µM = − Ψ Ψ Ψ Ψµ µ µ
µγ γ( )p

e
q e e

2

2

j x t
e
c

x tµ
µγ⇔ Ψ Ψ( , ) ( , )



Same order of 
magnitude: 
g  0.22 ≈ e
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E&M vs. WEAK 

E&M

Example of Feynman diagram: e-µ scattering. µ
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Weak

W’s are left 
handed
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E&M vs. Weak 
Order of magnitude of the Weak 

coupling at very low energies:

e2Order of magnitude of the E&M 
coupling :

≈ −10 7Ratio Weak/E&M:
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E&M vs. Weak: helicity 

H ( -
p
E

( -1 15 5γ ψ γ ψ) )≈ −
The helicity of 

leptons produced
in Weak decays:

Helicity is defined as:
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Allowed approximation
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Fermi:

Gamow-Teller:

(0+,1-)

(0-,1+)



Looking for Physics Beyond the 
Standard Model

Standard Model



Looking for Physics Beyond the 
Standard Model



Non-VA currents in Weak decays

e+

Are weak decays carried only by W’s?
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Or is there something new?
Higgs

Lepto-Quark
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Non-VA currents in Weak decays

e+

Are weak decays carried only by W’s?

W

d

u

e+

νe

Or is there something new?
Higgs

Lepto-Quark

u
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e+

νe
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Vector

Scalar



Detecting Scalar currents in weak decays

ν
e+

The e-ν correlation depends strongly on the nature of the carrier
(we take a 0+  0+ transition).

Standard Model
Vector Currents

New Physics?
Scalar Currents

spins have to
couple to zero 

νe

e+

spins

momenta
νe

e+

dW/dΩ = 1+ pe.pν/Ee Eν
dW/dΩ = 1- pe.pν/Ee Eν



A trick to avoid detecting the neutrino

32Ar

32Cl31S+p

Instead of detecting 
the neutrino



A trick to avoid detecting the neutrino

32Ar

32Cl31S+p

Instead of detecting 
the neutrino

We detect the proton
that contains the info
about the 32Cl recoil
(Doppler)



A trick to avoid detecting the neutrino

32Ar

32Cl31S+p

Instead of detecting 
the neutrino

We detect the proton
that contains the info
about the 32Cl recoil
(Doppler)

Monte-Carlo calculation 
of proton energy

scalar
vector







Experimental set-up Super-conducting solenoid
B=3.5 Tesla



Data





Problem: Isol-trap fellows measured a mass of 
33Ar and found in disagreement with parabola 
for A=33 system.







Problem: Isol-trap fellows measured a mass of 
33Ar and found in disagreement with parabola 
for A=33 system.

Solution: we found out the mass of 33Cl(T=3/2) 
they were using was incorrect (Pyle et al. 
PRL 88, 122501 (2002).) 

Using the correct mass for 33Cl(T=3/2) one 
obtains an excellent agreement with the 
Isospin parabola. 



Assuming the parabola works for A=32 one 
obtains M(32Ar)= -2197.0+-4.2 keV 

The Isol-trap new determination of the mass of 
32Ar is: -2200.1 +- 1.8 keV.



New Isol-trap data shows excellent agreement 
with the Isospin parabola but several 
quantities that affect our determination of the 
(e,ν) correlation have changed.

QEC, Energy calibration

We are presently re-doing all the data analysis 
to extract the correlation coefficient and 
systematic uncertainties.





Widths and spins of 33Cl from decay of 33Ar







Limits for scalar couplings
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