Weak Interactions in the Nucleus I

Summer School, Tennessee

June 2003

Using the nucleus to search for new physics

Summary

Historical Introduction

Dirac Equation. E&M and Weak Int.

Non-VA forces in weak decays → Measure e-v correlation

Non-Unitarty of the CKM matrix \rightarrow Isospin Breaking \rightarrow Measure β asymmetry with UCN

Time-Reversal Invariance Violation →Measure TRIV correlation

The Weak Interaction: A Drama in Many Acts

1890's: Roentgen discovers β rays

Thought Uranium salts were affected by the sun but rainy Paris soon helped showing otherwise.

1920's: Pauli proposes v

To explain continuous β spectrum: only way to save conservation of energy.

- 1950's Parity Violation
- To explain identical properties of θ and τ particles. Then clearly proven in Madame Wu's experiment.
- 1960's CP-Violation

Polarize ⁶⁰Co and look at the direction of the emitted β 's.

In a Parity-symmetric world we would see as many electrons emitted in the direction of J as opposite J.

Polarize ⁶⁰Co and look at the direction of the emitted β 's.

But in the real world we see only electrons emitted in the direction opposite **J**.

 \mathbf{p}_{v}

p_v

we would see as many v's with left-handed helicity (**p** opposite **S**) as right-handed helicity (**p** parallel to **S**).

But in the real world we see as only v's with left-handed helicity (**p** oppsite **S**).

Schroedinger Equation

How do we get a wave equation that yields conservation of energy and the correct deBroglie relations between particles and associated waves?

$$\frac{p^2}{2m} + V = E \qquad \qquad p = \hbar k$$

Schroedinger Equation

How do we get a wave equation that yields conservation of energy and the correct deBroglie relations between particles and associated waves?

$$\frac{p^2}{2m} + V = E \qquad p = \hbar k$$

$$\begin{array}{l} H \to i\hbar \frac{\partial}{\partial t} \\ p \to \frac{\hbar}{i} \nabla \end{array} \end{array} \qquad \left(-\frac{\hbar^2}{2m} \nabla^2 + V \right) \Psi = i\hbar \frac{\partial}{\partial t} \Psi$$

Schroedinger Equation: perturbation theory

$$H_0 \varphi_n = E_n \varphi_n \qquad (H_0 + V) \psi = i\hbar \frac{\partial}{\partial t} \psi$$

How do we get Ψ ?

$$\psi(x,t) = \sum_{n} a_{n}(t)\varphi_{n}(x)e^{-iE_{n}t/\hbar}$$

Replacing in Schrodinger's Equation and integrating:

$$a_{n}(t) = \frac{1}{i\hbar} \int_{-T}^{1} dt \int d^{3}x \, \varphi^{*}_{n}(x) \, e^{iE_{n}t/\hbar} \, V \, \varphi_{i}(x) \, e^{-iE_{i}t/\hbar}$$
Lorentz-invariant form:

$$T_{fi} = \frac{1}{i\hbar} \int d^4 x \ \varphi^*_n(x) V \varphi_i(x)$$

Schroedinger Equation: decaying rate

If V(x) is time-independent:

$$T_{fi} = V_{fi} \ 2\pi \delta(E_f - E_i)$$

The transition probability per unit time:

$$W_{fi} = \frac{|T_{fi}|^2}{T} = \frac{2\pi}{\hbar} |V_{fi}|^2 \,\delta(E_f - E_i)$$

In a decay, like $n \rightarrow p e v$ we have to sum over final states FERMI's golden rule:

$$W_{fi} = \frac{2\pi}{\hbar} |V_{fi}|^2 \frac{dN}{dE}$$

Examples of phase-space calculations

Using the neutron mean-life ($\tau \approx 900$ s) estimate the anti-neutrino absorption cross section on protons $\underline{v}+p \rightarrow n+e^+$:

For neutron decay:

$$W_{fi} = \frac{2\pi}{\hbar} |V_{fi}|^2 \frac{dN}{dE}$$

$$\frac{1}{\tau} = \frac{2\pi}{\hbar} |V_{fi}|^2 \int \frac{d^3 p_v}{(2\pi\hbar)^3} \frac{d^3 p_e}{(2\pi\hbar)^3} \delta(E_{\text{max}} - E_e - E_v)$$

For anti-neutrino absorption (Kamland):

$$\sigma \propto \frac{2\pi}{\hbar} |V_{fi}|^2 \int \frac{d^3 p_e}{(2\pi\hbar)^3} \delta(E_e - E_v - M_p - M_n)$$

Dirac Equation

How do we get a wave equation that is relativistically correct?

$$p^2 + m^2 = E^2$$

Dirac showed that one can start with a linear equation

$$\frac{\hbar}{i} \left(\alpha_1 \frac{\partial}{\partial x_1} + \alpha_2 \frac{\partial}{\partial x_2} + \alpha_3 \frac{\partial}{\partial x_3} \right) \Psi + \beta m \Psi = i\hbar \frac{\partial}{\partial t} \Psi$$
from where one regains $\left(-\hbar^2 \nabla^2 + m^2 \right) \Psi = -\hbar^2 \frac{\partial^2}{\partial t^2} \Psi$

for which the coefficients and the wave function can not be simply scalars

$$\alpha_i \alpha_k + \alpha_k \alpha_i = 2\delta_{ik}$$
$$\alpha_i \beta + \beta \alpha_i = 0$$
$$\beta^2 = 1$$

Dirac Equation

The matrices alphas have to be at minimum of dimension 4:

The wave function now has 4 components. For a free particle with *p***=0**:

We write it in terms of 2-comp spinors. For a free particle with *p***=0**:

$$\chi^{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \chi^{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad E > 0 \qquad u = \begin{pmatrix} \chi^{s} \\ 0 \end{pmatrix} \\ E < 0 \qquad \mathbf{v} = \begin{pmatrix} 0 \\ \chi^{s} \end{pmatrix}$$

For *p* ≠ 0:

$$Hu = \begin{pmatrix} m & \sigma \cdot p \\ \sigma \cdot p & -m \end{pmatrix} \begin{pmatrix} u_A \\ u_B \end{pmatrix} = E \begin{pmatrix} u_A \\ u_B \end{pmatrix} \implies \begin{cases} \sigma \cdot p \ u_B = (E-m)u_A \\ \sigma \cdot p \ u_A = (E+m)u_B \end{cases}$$

$$E > 0 \qquad u = \begin{pmatrix} \chi^{s} \\ \left(\frac{\sigma \cdot p}{E+m}\right) \chi^{s} \end{pmatrix} \qquad E < 0 \qquad u = \begin{pmatrix} \left(\frac{-\sigma \cdot p}{|E|+m}\right) \chi^{s} \\ \chi^{s} \end{pmatrix}$$

Dirac Eq. and E&M

Dirac Equation without E&M

$$\gamma^{\mu}p_{\mu}\Psi + \beta m\Psi = 0$$
 where

$$\gamma^{i} = \beta \alpha_{i}$$

re $\gamma^{0} = \beta$
 $\gamma^{\mu} \gamma^{\nu} + \gamma^{\nu} \gamma^{\mu} = 2g^{\mu\nu}$

with E&M (for electron)

$$\gamma^{\mu}(p_{\mu} + \frac{e}{c}A_{\mu})\Psi + \beta m\Psi = 0$$

This is equivalent to the previous plus an interaction:

$$\gamma^{\mu} \frac{e}{c} A_{\mu} \Psi$$

Quantizing the fields

Schroedinger Equation

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\Psi = i\hbar\frac{\partial}{\partial t}\Psi$$

Take:
$$\Psi(x,t) = \sum_{n} b_n(t)\psi_n(x);$$
 $H\psi_n(x) = E_n\psi_n(x)$
Then: $\frac{db_n}{db_n} - \frac{-i}{db_n} E_n$

$$\frac{db_n}{dt} = \frac{-i}{\hbar} b_n E_n$$

The Hamiltonian that yields the previous is:

$$H = \int d^{3}x \Psi * (x,t) \left(-\frac{\hbar^{2}}{2m} \nabla^{2} + V \right) \Psi (x,t)$$

Interpreting
$$b_n$$
 as an operator:
 $\begin{bmatrix} b_n, b_{n'}^+ \end{bmatrix} = \delta_{nn'}$ $H = \sum E_n b_n^+ b_n$

Quantizing the fields

Schroedinger Equation

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\Psi = i\hbar\frac{\partial}{\partial t}\Psi$$

Take:
$$\Psi(x,t) = \sum_{n} b_n(t)\psi_n(x);$$
 $H\psi_n(x) = E_n\psi_n(x)$
 $db_n - i$

$$\frac{d v_n}{dt} = \frac{1}{\hbar} b_n E_n$$

The Hamiltonian that yields the previous is:

$$H = \int d^{3}x \Psi^{*}(x,t) \left(-\frac{\hbar^{2}}{2m}\nabla^{2} + V\right) \Psi(x,t)$$

Interpreting
$$b_n$$
 as an operator:
 $\begin{bmatrix} b_n, b_{n'}^+ \end{bmatrix} = \delta_{nn'}$ $\hat{H} = \sum E_n b_n^+ b_n$

Quantizing the fields

For bosons:

$$[b_{n}, b_{n'}] = \delta_{nn'}$$

For fermions:

$$\{b_n, b_{n'}^+\} = \delta_{nn}$$

The various wave functions are generated by applying the creator operator on the vacuum state: $|C_1, t \ge \int d^3x C_1(x) \Psi^+(x,t)|0>$

Current-current interaction

E&M interaction in Dirac's Equation $\hat{H}_{int} = -\int d^3x \, \Psi(x,t) \left(\frac{e}{c} \gamma^{\mu} A_{\mu}\right) \Psi(x,t)$

The vector potential should satisfy Maxwell's equations:

$$\Box^{2}A_{\mu} = j_{\mu} \rightarrow A_{\mu}(q_{\mu}) = -\frac{j_{\mu}}{q^{2}} \qquad j_{\mu} \Leftrightarrow \overline{\Psi}(x,t) - \frac{e}{c} \gamma^{\mu} \Psi(x,t)$$

е

Example of Feynman diagram: e- μ scattering.

$$\mathsf{M} = -\overline{\Psi}_{\mu} \gamma_{\mu} \Psi_{\mu}(p) \frac{e}{q^{2}} \overline{\Psi}_{e} \gamma^{\mu} \Psi_{e}$$

E&M vs. Weak

Order of magnitude of the Weak coupling at very low energies:

 $g^2 \frac{q^2}{{M_W}^2} \approx g^2 \left(\frac{5}{80.000}\right)^2$

Order of magnitude of the E&M coupling :

 e^2

Ratio Weak/E&M:

 $\approx 10^{-7}$

E&M vs. Weak: helicity

Helicity is defined as:

$$H = \frac{\vec{\sigma}.\vec{p}}{|p|}$$

The helicity of leptons produced in Weak decays:

$$H(1-\gamma_5)\psi \approx -\frac{p}{E}(1-\gamma_5)\psi$$

Konopinski's argument:

instant velocity against momentum can only be $\pm c$ $(\Delta t \rightarrow 0 \Rightarrow \Delta E \rightarrow \infty)$

$$|a|^2 (+c) + (1-|a|^2)(-c) = v$$

Then helicity:
$$|a|^2 (-1) + (1 - |a|^2)(+1) = - v/c$$

Allowed approximation

As a result, two types of allowed transitions:

Fern

Fermi:
$$J_f = J_i; \quad I_f = I_i; \quad \pi_f = \pi_i;$$

Gamow-Teller: $J_f = J_i \otimes 1; \quad I_f = I_i \otimes 1; \quad \pi_f = \pi_i;$

Looking for Physics Beyond the Standard Model

Standard Model

The second secon

່ວວ

 \bigstar

Looking for Physics Beyond the Standard Model

Non-VA currents in Weak decays

Are weak decays carried only by W's?

d ν_e Higgs U e^+

.epto-Quark

٧_e

ν_e

W

Or is there something new?

Non-VA currents in Weak decays

Detecting Scalar currents in weak decays

The e-v correlation depends strongly on the nature of the carrier (we take a $0^+ \rightarrow 0^+$ transition).

 $dW/d\Omega = 1 + \mathbf{p}_e \mathbf{p}_v / \mathbf{E}_e \mathbf{E}_v$

A trick to avoid detecting the neutrino

A trick to avoid detecting the neutrino

A trick to avoid detecting the neutrino

Problem: Summing with positrons distorts the shape of the proton peak

Problem: Summing with positrons distorts the shape of the proton peak

Full *R-matrix* fit to beta-delayed proton spectra from ³²Ar and ³³Ar

Isobaric Multiplet Mass Equation

Masses of an Isospin mulitplet should follow a parabola

Proof (Wigner, Weinberg-Treiman):

$$M = <\Psi | H |\Psi> =$$
$$Hc = \Sigma qi qj f(rij) \qquad qj \qquad qj \qquad qj$$

Then: $M = a + b Tz + c Tz^2$

Problem: Isol-trap fellows measured a mass of ³³Ar and found in disagreement with parabola for A=33 system.

Experimental Setup

- Penning trap mass spectrometer
- \Box Principle based on measurement of _c = qB/m
- Installed at the ISOLDE facility at CERN
- \Box Typical relative mass uncertainty: u(m)/m = 10⁷
- □ Relative mass accuracy: u_{syst} (m)/m < 10^8
- Applicable to all elements and to short-lived radioactive nuclides
- RFQ ion beam cooler and buncher (RICB) Function: Deceleration, cooling, bunching
- Cooling Penning trap
 - Function: Mass-selective cooling
 - Resolving power typically $R = 10^{\circ}$
- Precision Penning trap
 - Function: Precision mass measurement
 - Resolving power $R = 10^{\circ}$ at $t_{exc} = 1$ s

Results: Argon measurements 2000/2001

Isotopes measured: ³⁴Ar, ³³Ar, ³²Ar (n-deficient) ⁴²Ar, ⁴³Ar, ⁴⁴Ar, ⁴⁵Ar (n-rich)

Test of the IMME for the A =33, T =3/2 quartet (33 P, 33 S, 33 Cl, 33 Ar): Quadratic fit yields $^2 = 10$ Cubic term required d = 2.75(88) keV

Highlight: 32 Ar Half-life T_{1/2} = 98 ms Mass uncertainty u(m) 3 keV (to be evaluated) Problem: Isol-trap fellows measured a mass of ³³Ar and found in disagreement with parabola for A=33 system.

Solution: we found out the mass of ³³Cl(T=3/2) they were using was incorrect (Pyle et al. PRL **88**, 122501 (2002).)

Using the correct mass for ³³Cl(T=3/2) one obtains an excellent agreement with the Isospin parabola.

Assuming the parabola works for A=32 one obtains M(³²Ar)= -2197.0+-4.2 keV

The Isol-trap new determination of the mass of ³²Ar is: -2200.1 +- 1.8 keV.

New Isol-trap data shows excellent agreement with the Isospin parabola but several quantities that affect our determination of the (e,v) correlation have changed.

Q_{EC}, Energy calibration

We are presently re-doing all the data analysis to extract the correlation coefficient and systematic uncertainties.

Isospin Configuration Mixing

Widths and spins of ³³Cl from decay of ³³Ar

In $0^+ \rightarrow 0^+$ nuclear β decay: $H = G_W / \sqrt{2} (H_{S^+} H_V)$

Consequence: decay rate for
$$0^+ \to 0^+$$
 decays
 $dW = dW_0(1 + a \frac{\vec{R} \cdot \vec{R}}{E_0 E_V} + b \frac{\Gamma m}{E_0} + \langle \vec{J} \rangle \dots)$
 $= \frac{C_V^2 + C_V^{*2} - C_S^2 - C_S^{*2}}{C_V^2 + C_V^2 + C_S^2 + C_S^{*2}}$
 $= \frac{-2Re(C_S C_V^* + C_S^* C_V^{**})}{C_V^2 + C_S^{*2} + C_S^{*2} + C_S^{*2}}$

A pedestrian approach: Why are *a* and *b* sensitive to *Tensor* and *Scalar* contributions to Nuclear Beta Decay?

b comes as in interference between V and S

 $H_{V} = (\overline{\Psi}_{P} \gamma^{\mu} \Psi_{n}) (\overline{\Psi}_{e}^{L} (C_{V} \gamma_{\mu}) \Psi_{V}^{L}) + \dots$ $H_{S} = (\overline{\Psi}_{P} \Psi_{n}) (\overline{\Psi}_{e}^{R} (C_{S} + C_{S}^{*}) \Psi_{V}^{L}) + \dots$

Limits for scalar couplings

 $\mathcal{F}t = \mathcal{F}t_0 (1 + b \gamma \langle m/E \rangle)$

From the slope in this plot one extracts:

 $b = (3.4 \pm 2.9) \times 10^{-3}$

or,

$$C_{\rm S}^{+} C_{\rm S}^{\prime} \approx (1.7 \pm 1.5) \times 10^{-3}$$

TRIUMF Neutral Atom Trap Search for Scalars

-0.0000 + 0.0052 (stat) + 0.0070 (sust)