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Using the nucleus to search for new physics

Summary
Historical Introduction

Dirac Equation. E&M and Weak Int.

Non-VA forces in weak decays
- Measure e-v correlation

Non-Unitarty of the CKM matrix
—>lIsospin Breaking
—->Measure § asymmetry with UCN

Time-Reversal Invariance Violation
—>Measure TRIV correlation



‘ The Weak Interaction: A Drama in
Many Acts

= 1890’s: Roentgen discovers [ rays

Thought Uranium salts were affected by the sun but rainy Paris soon
helped showing otherwise.

= 1920’s: Pauli proposes v

To explain continuous B spectrum: only way to save conservation of
energy.

= 1950’s Parity Violation

To explain identical properties of 6 and t particles. Then clearly proven
in Madame Wu's experiment.

= 1960’s CP-Violation




‘ Parity Violation

Parity Mirror

s JD>Y —f— —f

Madame Wu’s experiment:
Polarize 6°Co and look at the direction of the emitted B’s.

In a Parity-symmetric world we

would see as many electrons

emitted in the direction of J as « m Pe
opposite J. P.




‘ Parity Violation

Parity Mirror
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Madame Wu’s experiment:
Polarize 6°Co and look at the direction of the emitted B’s.

But in the real world we see

only electrons emitted in the , ‘ i}
direction opposite J. P,




‘ Parity Violation

Parity Mirror

NEW + < ﬁv

Other experiments:
Look at the helicity of neutrinos.

In a Parity-symmetric world
we would see as many v’s

S, S,
with left-handed helicity (p R
oppo§i’Fe S) as right-handed p P, k 7/

v
-~ helicity (p parallel to S)
,.




‘ Parity Violation

Parity Mirror

NEW + < ﬁv

Other experiments:
Look at the helicity of neutrinos.

But in the real world we see S

A%

as only v’s with left-nanded R
helicity (p oppsite S). p

v




‘ Schroedinger Equation

How do we get a wave equation that yields conservation of energy and
the correct deBroglie relations between particles and associated waves?

2

L yv-kF p=nhk

2m
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Schroedinger Equation: perturbation theory

%

How do we get i/?
y(x.0)= L a,(0p, (e

Replacing in S%hrodlnger s Equation and integrating:
ik, t/h

0, ()= [ dt] dxg (™" V g e

—T
Lorentz-invariant form:
1

4 *
T,=—[d'x ¢"(x)V ¢,(%)

—iE, t/h

iE.t/h

_J/




Schroedinger Equation: decaying rate

If V(x) is time-independent: Tﬁ = Vﬁ 272'5(Ef — El.)

The transition probability per unit time:

T, 1 2z
=7 = V., 6(E, - E,)

In a decay, like n=2p e v we have to sum over final states
FERMI’s golden rule:
, AN

dE

27
W=V,




Examples of phase-space calculations

Using the neutron mean-life (t = 900 s) estimate the anti-neutrino
absorption cross section on protons v+p = n+e*:

For neutron decay: VVﬁ = 7|Vf dE

1 2z ¢ d’p, d’p,
el 1 e hraee
T N (27h)” (27h)

L — E,~ E,)

For anti-neutrino absorption (Kamland):

2T v |2j d3
! (2727@)

~S(E,~ E,- M,- M,)



‘ Dirac Equation

How do we get a wave equation that is relativistically correct?
p2 + m2 _ E2

Dirac showed that one can start with a linear equation

ﬁ 0 + 0 + 0 Y + fm¥ = hﬁT
“Uox, ox, “ox, OXx, “ o, OXx, AP

from where one regains (— AV + m’ )\P = —h’ é’—t‘{’

oo, + a.a =20,

for which the coefficients a.f+ Pa. =0
and the wave function can ’ :
not be simply scalars B =1




‘ Dirac Equation

The matrices alphas have to be at minimum of dimension 4:

0 o,
A = where O; are the Pauli matrices

o 0

1

. (0 1) (0 —ij (1 0
A=l 1 T lo 27hoo) o -

The wave function now has 4 components. For a free particle with p=0:

1 0 0
LPI = e—imt/h g \{12 — e—imt/h (1) \{13 — e+imz/h ? \{14 — e+imt/h
0 0 0

- o O O




We write it in terms of 2-comp spinors. For a free particle with p=0:

S

4

ey
ZS

m o-p\lu, U, o.puy=(E-mu,
Hu: — E - —
o-p —-m)\u, U, o.pu,=(E+mu,

S

(—G-p) s
j S E<0 u=|Efrm ¥
£ X



‘ Dirac Eq. and E&M

Dirac Equation without E&M

y'p,Y+ pm¥ =0

with E&M (for electron)

where

e
Y (p, ;Aﬂ)‘{’ + fm¥Y =0

y' = pe,
y'=p
vyt ryyt =280

This is equivalent to the previous plus an interaction:

€4y
C H




Quantizing the fields

Schroedinger Equation (_ ﬁv 2 4 V) /- lhéqj

2m Ot
Take: LP()C,l‘) = Z bn(l‘)l,ﬂn(X); HWn(x) = k£ Wn(x)
§ db,
Then: b E
dt ~ h "

The Hamiltonian that yields the previous is:
hZ
— jd3x Y *(x,t)(— 2—V2 + Vj‘l’(x,t)
m

Interpretlng b as an operator:

b4 126, H=YEbD,



Quantizing the fields

Schroedinger Equation (_ ﬁv 2 4 V) /- lhéqj

2m Ot
Take: LP()C,l‘) = Z bn(l‘)l,ﬂn(X); HWn(x) = k£ Wn(x)
§ db,
Then: b E
dt ~ h "

The Hamiltonian that yields the previous is:

hz
( —V°+ Vj‘l’(x,t}

H = Jd3x ‘1’1 *(x,t

o

2m

Interpretlng b as an operator

(b, b, ]= 6 H=) Eb'b



‘ Quantizing the fields
For bosons: [bn ,bn'+] = 5nn

For fermions: {bn ,bn.+} =0

nn'

The various wave functions are generated by applying
the creator operator on the vacuum state:

|C,,t>= Jaﬂx C (x)¥ " (x,1)0>




‘ Current-current interaction

E&M interaction in Dirac’s Equation

A

H, = -[d’x P (x,0) 27/”/1# W (x, 1)

Int

The vector potential should satisfy Maxwell’s equations:

J : U €
A=, 4,(q,)= -q—” Ju & ¥y (x1)

Example of Feynman diagram: e-u scattering. K

2

M=-¥ 7, ﬂ(p)—‘l’ y“Y,




E&M vs. WEAK

E&M - - LP/u 7/luLPlu(p) qZ

Weak - \Pﬂ Q/ﬂ(l— 7s)

¥ oY

Y, (p) @

Same order of
magnitude:
g 0.22=e

\

W’s are left
handed

qz — MV/

Example of Feynman diagram: e-u scattering.




E&M vs. Weak

Order of magnitude of the Weak
coupling at very low energies:

Order of magnitude of the E&M
coupling :

Ratio Weak/E&M:




E&M vs. Weak: helicity

5.7

Helicity is defined as: H = | |
P

The helicity of
Ieptc?nsep:oguc::ed H (1'7/5)',” R = %(1'7/5)9”

in Weak decays:

Konopinski’s argument:

instant velocity against
momentum can only be ¢ (At >0 = AL OO)

-laf* (+¢) + (I-[af )(-e) = v

Then helicity: laf (-1)+ (I-]al’ )(+1) = - v/c




‘ Allowed approximation
(0,1)

nwz: Hx5=T
7 .
Vuls l//zl)”:’ szrigi

(0,1%)

As a result, two types of allowed transitions:

Fermi: Jf:Ji; ]f:]i; 7z'f:7z'.;

Gamow-Teller: Jf = J, ® 1; ]f = ],- ® 1; T, = 7T s




‘ Looking tfor Physics Beyond the
Standard Model

odel

Standard



‘ Looking tfor Physics Beyond the
Standard Model




‘ Non-VA currents in Weak decays

Are weak decays carried only by W’s?

Or is there something new? W
Ve
u/ Lepto-Quark




‘ Non-VA currents in Weak decays

Are weak decays carried only by W’s?

Vector

Or is there something new? et d

Scalar 5+ Lepto-Quark




Detecting Scalar currents in weak decays

The e-v correlation depends strongly on the nature of the carrier
(we take a 0* - 0* transition).

spinshaveto | ef ==>
couple to zero vV <=
Standard Model spins
Vector Currents
momenta

+ — /
e

(¢

e
A%

dW/dQ =1+ p,p,/E. E,

New Physics?
Scalar Currents

dW/dQ = 1- p.p,/E. E,




‘ A trick to avoid detecting the neutrino

/,\ S2Ar

/ Instead of detecting
the neutrino

31S+p 32CJ




‘ A trick to avoid detecting the neutrino

/,\ SZAr
/ Instead of detecting
the neutrino

31S+p 32CJ

We detect the proton
that contains the info
about the 32Cl recoil
(Doppler)




‘ A trick to avoid detecting the neutrino

/,\ SZAr

/ Instead of detecting
the neutrino

31S+p 32CJ

Monte-Carlo calculation

: of proton energy
We detect the proton S —

that contains the info
about the 32Cl recaoil
(Doppler)

vector

dn/dE (arbitrary units)

N0 TN TP T TP AN
~15-10 -5 0 5 10 15
E—E, (keV)




Problem: Summing with positrons
distorts the shape of the proton peak

ot _
32
o Ar 3‘20|\ /
p 32 e+
e
p et+p

-20.0-10.0 0.0 10.0 2OI.O
AE_(keV) /
These events
belong here




Problem: Summing with positrons
distorts the shape of the proton peak

ot _
32ar 32 /
ot \
P 32 et
Ar
324
fo)
-20.0-10.0 0.0 10.0 20I.O
AE,(keV)

These events
belong here




‘ Experimental Set—up SUPGé—:g?gSgg solenoid

¢ Peltier with
PIN diods jesdback LN2 cavity

At—11 C —ﬁ.‘m A— ‘,/a”d bell
Collimator ‘ O—

-

- LNZ intake

32Ar beam
from Isolde

beam
collimator




Full R-matrix fit to beta-delayed proton
spectra from 3Ar and 33Ar

10000 ¢

1000 -

32p,

100 3

10
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g
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w g
i 0
10000 - } 10°
: )
1000 - g
: o 1ol
100 - ©10
10 "‘! a1l by
F ] 100 ||||||||||||||
1 6600 6650 6700 6750 6800
2000 2500 3000 3500 4000

channel number



Isobaric Multiplet Mass Equation

Masses of an Isospin mulitplet should follow a parabola

Example: T=2 Quintuplet
32Si 32Ar

32P 32ClI

32S

Proof (Wigner, Weinberg-Treiman):

M=<¥| H |W>=<T,Tz | Ho+Hc | T, Tz >

Hc =X qi qj f(rij) WMJ
qi qi

Then: M=a+sz+cT22



Problem: Isol-trap fellows measured a mass of
33Ar and found in disagreement with parabola
for A=33 system.




1 L

~ Experimental Setup

TRAP

wn
(@)

P
>

[] Penning trap mass spectrometer

[] Principle based on measurement of .= gB/m
[] Installed at the ISOLDE facility at CERN

[] Typical relative mass uncertainty: u(m)/m = 107
[ Relative mass accuracy: Ug,g(m)/m < 10°

[] Applicable to all elements and to short-lived
radioactive nuclides

RFQ ion beam cooler and buncher (RICB)
Function: Deceleration, cooling, bunching

Cooling Penning trap
- Function: Mass-selective cooling
- Resolving power typically R = 10

Precision Penning trap
- Function: Precision mass measurement
- Resolving power R = 1§ at te,o = 1S

MCP detector

Precision trap II

Cooling trap HiiH

RICB

60000V

T

| wo |
ol B 3

Alban Kellerbauer [] EURISOL Town Meeting [] January 2002



ISOL

TRAP

Results: Argon measurements 2000/2001 (@)

S

Isotopes measured: 34Ar, 33Ar, 32Ar (n-deficient)
42Ar, 43Ar, 4*Ar, %°Ar (n-rich)
170
o Test of the IMME for the A =33,
gmoi; T T =3/2 quartet (33P 33S,33Cl, 33Ar):
% 1o I Quadratic fit yields 2 = 10
= 110 Cubic term required d = 2.75(88) keV
100] BAr
90' - 220i
D Highlight: S2Ar
. Half-life T,, =98 ms
s Mass uncertainty u(m) 3 keV
S 120 (to be evaluated)
80

40 30 -20 10 0 10 20 30
e 2842679 (Hz)




Problem: Isol-trap fellows measured a mass of
33Ar and found in disagreement with parabola
for A=33 system.

Solution: we found out the mass of 33CI(T=3/2)
they were using was incorrect (Pyle et al.
PRL 88, 122501 (2002).)

Using the correct mass for 33CI(T=3/2) one
obtains an excellent agreement with the
|lsospin parabola.




Assuming the parabola works for A=32 one
obtains M(3?Ar)= -2197.0+-4.2 keV

The Isol-trap new determination of the mass of
32Ar is: -2200.1 +- 1.8 keV.




New Isol-trap data shows excellent agreement
with the Isospin parabola but several
quantities that affect our determination of the
(e,v) correlation have changed.

Qgc, Energy calibration
We are presently re-doing all the data analysis

to extract the correlation coefficient and
systematic uncertainties.




Isospin Configuration Mixing

1000

—_—
——
| IlIIII|

100

-

10

| “




Widths and spins of 33Cl from decay of 33Ar

| ' ] '

10000

P
—

——
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| I T T TTTHI
—

100

NON D
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In 0%¥— O*nuclear (3 decay:

H = Gy/2 (Hg+ H,, )

Hg=( T %) (%, (Cs+35C5) ¥%,)
HV =( % 'Yu‘Pn) ( ‘Pe (CVYM+Ci/Yu’Y5) lP\;)

Consequence: decay rate for 050" decays

—_ =

dW = dW0(1+ %— _Me (D). ..

c5+ -e2-¢
2

CV+ ’2 + C§+
Re(C C* +C’ C’*)

+Cz+




A pedestrian approach: Why are a and b
sensitive to Tensor and Scalar
contributions to Nuclear Beta Decay?

Example: o — 6" nuclear 3 decay

Vector: Scalar:
Y
/\/\/\< Y
NG /\/\/\< )
et :{> et I:
v <I:| spins v j
et 5 et | ————>
v . momenta N c
—_—
dW/dQ(Vector)= 1 + PR, dW/dQ(Scalar)= 1 — A
E E E E

b comes as in interference between V and S
Hy, = (S 7M¥,) (9 (Cyry) W)+
He=(% %) ( 96(Cs+C5 ) L) + ...




Limits for scalar couplings

0.50

—050 |

Time-reversal odd

Time-reversal even
| [ T

From Neutron 3
decay: A, B, a, t1/2

[, | . .4
T I T N T B B ||||||I|||||~1’/||

-0.5 -0.25 0 025 05 -0.5 -0.25 0 025 0.5
Im[Cs/Cy] Re[Cs/Cy]




7t = 7y (1+ by (M/E))

3085.0 |

+,3080.0 [ -

N E
3075.0 ﬁ !

fer !

3065.0

3060.0 — .
0.0 0.20 0.40 0.60 0.80
Km/E)

From the slope in this plot one extracts:

b=(34+29)x 103
or,

Co+ G4 ~ (1.7+ 1.5)x 1073



TRIUMEF Neutral Atom Trap
Search for Scalars

o Etletgtro-
static
P
] hoops
|[3/detect(1
Collection chamber Detection chamber

3.0 B IR w |

38mK




TRIUMF Neutral Atom Trap
MK 0*->0* B*—v correlation
wW[e] = 1 + bm/E + a v/c cos@

1.2 :
— a = 0.98
=1 I > -
} 1.0 I/L \vl_/ll/l—\ it "
= ‘ t] ] b ] [
a8 o9f |
0.8 - - : .
400 500 600 700 800
4 . ‘Recoll TQF(ns)
10 E,,>2.5MeV|
1 Art3 Art? Art! :
g |
S  10°] i
o
O -
10°1 1 L | i
400 500 600 700 800
Recoil TOF [ns]
PRELIMINARY':

a = 0.992 + 0.008 (stat) + 0.005 (syst)
- M/ (G,/G,) > 200 GeV/c?
[Oct 00 a= ? + 0.003 (stat) + 0.003? (syst)]

Adelberger et al. *?Ar [P.R.L. 83 (1999) 1299]:

AN  ANNO N R A NN\CH /7 L 1\ R ~N NN =ZNA [ . 1\
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