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Some Results-1

A new exact symmetry for baryons as Nc →∞

A SU(6)c spin-flavor symmetry that connects the
six states u ↑, u ↓, d ↑, d ↓, s ↑, s ↓.
Baryons form an irrreducible representation of
the spin-flavor algebra.

Relates octet N, Λ, Σ, Ξ and decuplet ∆, Σ∗, Ξ∗, Ω.
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Some Results-2

Can compute 1/Nc corrections in a systematic
expansion, and the expansion is useful for Nc = 3

1/Nc corrections can be classified by their
spin-flavor transformation properties

Relations obtained to various orders in 1/Nc.
1/Nc = 1/3 factors evident in the experimental
data.

1/Nc corrections comparable in size to SU(3)

breaking corrections due to ms

NPSS 2002 – p.3



Some Results-3

Provides a deeper understanding of the success
of quark models.

Many results obtained in the nonrelativistic quark
model, bag model, or Skyrme model,
can be proven in QCD to order 1/Nc or 1/N2

c .

SU(6)c is the underlying symmetry that relates
quark models to each other and to QCD.
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Some Results-4

Tells you how to consistently apply chiral
perturbation theory to baryons

Nc and ∆ states have to be treated together

Cancellations in chiral loops

Form of SU(3) symmetry breaking due to ms is
constrained by the 1/Nc expansion.

Provides new insights into SU(3) breaking.

NPSS 2002 – p.5



Some Results-5

New predictions for heavy baryon properties

Relates heavy quark baryons to the nucleon

Compute masses and pion couplings of the Λc,
Λb, etc Results are in good agreement with
experiment.

Can combine 1/Nc and 1/mQ expansions
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Some Results-6

New predictions for excited baryons
(Carlson, Carone, Goity, Schat, Lebed, Pirjol, Yan)

Nucleon Potential

Explains the size of terms in the nucleon
potential

Gives Wigner supermultiplet symmetry in light
nuclei
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Large-Nc Baryons

εi1i2i3···iNc
qi1qi2qi3 · · · qiNc

bound state of Nc quarks
completely antisymmetric in color

completely symmetric in the quarks, since Fermi-

statistics compensated by color antisymmetry.
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Nc Counting Rules for Baryons

Baryon is made of Nc quarks.

Baryon mass is order Nc

Baryon size is order Λ−1
QCD (order one)

Baryon-meson coupling is ≤ √Nc

Each extra meson costs 1/
√

Nc

One-body matrix element 〈B| q̄ Γ q |B〉 ≤ Nc

Two-body matrix element (q̄ Γ q q̄ Γ q) ≤ N 2
c
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Baryon-Meson Couplings

baryon-meson vertex ∼ O
(√

Nc

)

Nc

(
1√
Nc

)

⊗ = q̄q/
√

Nc creates a meson with unit amplitude
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Baryon-Meson Scattering

baryon + meson → baryon + meson ∼ O (1)

Nc

(
1√
Nc

)2

N2
c

(
1√
Nc

)2 (
1

Nc

)

(a) (b)
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Baryon-Pion Scattering

Mbaryon ∼ O(Nc), so baryon acts as heavy static
source

Baryon propagator

i (P/ + M)

P 2 −M2
→ i

k · v
(

1 + v/

2

)
→ i

E

[Not only for pions. Argument is cleanest in this
case.]

NPSS 2002 – p.12



BB′π vertex ∼ O(
√

Nc)

∂µπ
a

fπ

(Aµa)B′B

(Aµa)B′B = 〈B′|q̄γµγ5τ
aq|B〉 ∼ O(Nc)

Nc →∞ limit
∂iπa

fπ

(
Aia

)
B′B

Aia ≡ gNcX
ia
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k k

Nc

[
X ia, Xjb

] ≤ O(1)

X ia = X ia
0 +

1

Nc

X ia
1 +

1

N2
c

X ia
2 + . . .

[
X ia

0 , Xjb
0

]
= 0
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Spin-Flavor Symmetry

Consistency conditions for scattering of
low-energy pions with baryons at large-Nc leads
to derivation of contracted spin-flavor symmetry
for baryons

Consistency of large-Nc power counting rules for
baryon-meson scattering amplitudes and vertices
leads to non-trivial constraints on 1/Nc

corrections to large-Nc baryon matrix elements
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Contracted Spin-Flavor Algebra

[
J i, Ia

]
= 0,

[J i, J j] = iεijkJk,
[
Ia, Ib

]
= iεabcIc,

[
J i, Xja

0

]
= iεijkXka

0 ,
[
Ia, X ib

0

]
= iεabcX ic

0 ,

[
X ia

0 , Xjb
0

]
= 0
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Induced Representations

So the starting point is to work out the irreducible
representations of the contracted symmetry, and then
classify the 1/Nc corrections.

Standard theory of induced representations (e.g.
Mackey) gives the Skyrme model.

Infinite dimensional unitary representations
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Large-Nc Skyrme Model

Simple understanding of spin-flavor generator X ia
0

as collective coordinate

X ia
0 = tr Aτ iA−1τa

Contracted spin-flavor symmetry for baryons in
Nc →∞ limit realized exactly since

[
X ia

0 , Xbj
0

]
= 0.
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Quark Model

The SU(6) generators are

J i = q†
σi

2
q

T a = q†
τa

2
q

Gia = q†
σi

2

τa

2
q

with
[
q, q†

]
= 1.
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This gives

[
J i, Gjb

]
= iεijk Gkb

[
Ia, Gjb

]
= iεabc Gjb

[
Gia, Gjb

]
=

i

4
εijkδab Jk +

i

4
δijεabc T c

Let

Gia = NcX
ia,

and take the limit Nc →∞. This reduces to the QCD
symmetry derived earlier.
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NF = 2

J = I =
1

2
,

3

2
,

5

2
, · · · , Nc

2

N, ∆, . . .

An infinite tower of degenerate states as Nc →∞.

Known that the Skyrme and Quark models were
equivalent as Nc →∞. By explicit calculation, and by
a trick.
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J = 1
2 SU(3)F rep

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1 1 1 1 1 1

2

2 2

2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

← 1
2
(Nc + 1) weights →

NPSS 2002 – p.22



J = 3
2 SU(3)F rep

1 1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1 1 1 1

2 2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2 2 2 2 2

3 3

3 3

3 3

3 3

3 3

3 3 3 3 3

4

4 4

4 4 4

4 4 4 4

← 1
2
(Nc − 1)→
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1/Nc CORRECTIONS

ω1 ω
2

ω1+ ω
2 + perms

Graph ∝ N 3/2
c

[
X ia,

[
Xjb, Xkc

]]
+ N3/2

c

[
X ia,

[
Xjb,

[
Xkc, ∆M

]]]

Feynman diagrams give multiple commutators
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Baryon propagator

i

E −∆M
→ i

E

(
1 +

∆M

E
+ · · ·

)

Expand the vertex in 1/Nc

X = X0 +
1

Nc

X1 +
1

N2
c

X2 + . . .
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Find [
X ia

0 ,
[
Xjb

0 , Xkc
1

]]
+

[
X ia

0 ,
[
Xjb

1 , Xkc
0

]]
= 0

[
X ia

0 ,
[
Xjb

0 ,
[
Xkc

0 , ∆M
]]]

= 0
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Results (two flavors)

X1 ∝ X0

∆M ∝ J2

Nc

X = X0 +
1

Nc

X1 +
1

N2
c

X2 + . . .

No 1/Nc corrections to ratio of pion couplings such as
gπNN/gπN∆.
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Pion Couplings

Explains why the Skyrme/Quark model predictions
work well for the ratios, but not for the absolute
values. The ratios are the same as in QCD to order
1/N2

c .

Theory Experiment

gπN∆ 13.2 20.3

gπNN 8.9 13.5

gπN∆/gπNN 1.48 1.5

(From Adkins, Nappi, Witten)
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Hyperfine Mass Splittings

1

1/Nc

Nc

�

�

�

�

�
�

The 1/Nc corrections are small only in a part of the
irreducible representation.
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Form of 1/Nc Expansion (NF = 2)

N ?
c P

(
X ia

0 ,
J i

Nc

,
Ia

Nc

)

Or one can use

N ?
c P

(
Gia

Nc

,
J i

Nc

,
Ia

Nc

)

Two equivalent representations.
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Form of 1/Nc Expansion (NF = 3)

NF = 3 using isospin flavor symmetry only

Nc P
(

X ia
0 ,

J i

Nc

,
Ia

Nc

,
S

Nc

)

where S is the strangeness. Thus 1/Nc constrains the
form of SU(3) breaking.
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n-body Quark Operators

0-body: 11

1-body: J i = q†
(

σi

2
⊗ 11

)
q

Ia = q†
(
11⊗ τa

2

)
q

Gia = q†
(

σi

2
⊗ τa

2

)
q

Nc = q†q

2-body: {J i, Gja}
...
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⊕
⊕⊗

⊗

Gia =

Nc∑
�=1

q†�

(
σi

2
⊗ τa

2

)
q�, J iIa =

∑
�,�′

(
q†�

σi

2
q�

) (
q†�′

τa

2
q�′

)

Note that commutators reduce n-body → (n − 1)-body.
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Operator Analysis

The general solution of the consistency conditions is
to expand a given QCD quantity Q as

Q = N ?
cP

(
Gia

Nc

,
J i

Nc

,
T a

Nc

,

)

where P is a polynomial.
Agrees with the digrammatic analysis: each extra
quark needs a gluon-exchange ⇒ 1/Nc
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SU(3)F

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1 1 1 1 1 1

2

2 2

2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

〈T a〉 ∼



O(1) a=1,2,3

O(
√

Nc) a=4,5,6,7

O(Nc) a=8

〈Gia〉 ∼



O(Nc) a=1,2,3

O(
√

Nc) a=4,5,6,7

O(1) a=8
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SU(6) Operator Identities

2
{
J i, J i

}
+ 3 {T a, T a} + 12

{
Gia, Gia

}
= 5N (N + 6) (0, 0)

dabc
{
Gia, Gib

}
+ 2

3

{
J i, Gic

}
+ 1

4
dabc

{
T a, T b

}
= 2

3
(N + 3) T c (0, 8){

T a, Gia
}

= 2
3

(N + 3) J i (1, 0)
1
3

{
Jk, T c

}
+ dabc

{
T a, Gkb

} − εijkfabc
{
Gia, Gjb

}
= 4

3
(N + 3) Gkc (1, 8)

−12
{
Gia, Gia

}
+ 27 {T a, T a} − 32

{
J i, J i

}
= 0 (0, 0)

dabc
{
Gia, Gib

}
+ 9

4
dabc

{
T a, T b

} − 10
3

{
J i, Gic

}
= 0 (0, 8)

4
{
Gia, Gib

}
=

{
T a, T b

}
(27) (0, 27)

εijk
{
J i, Gjc

}
= fabc

{
T a, Gkb

}
(1, 8)

3 dabc
{
T a, Gkb

}
=

{
Jk, T c

} − εijkfabc
{
Gia, Gjb

}
(1, 8)

εijk
{
Gia, Gjb

}
= facgdbch

{
T g, Gkh

}
(10 + 10) (1, 10 + 10)

3
{
Gia, Gja

}
=

{
J i, Jj

}
(J = 2) (2, 0)

3 dabc
{
Gia, Gjb

}
=

{
J i, Gjc

}
(J = 2) (2, 8)
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Operator Reduction Rule NF = 3

All operators in which two flavor indices are
contracted using δab, dabc, or fabc or two spin
indices on G’s are contracted using δij or εijk can
be eliminated.
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Baryon Masses

Combined expansion in 1/Nc and SU(3) flavor
symmetry breaking

Flavor symmetry breaking expansion extends to
3rd order in SU(3) breaking

For Nc = 3, only need to keep the expansion till
3-body operators

M = M1 + M8 + M27 + M64

Jenkins & Lebed
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Baryon Masses NF = 3

M1 = Nc11 +
1

Nc

J2

M8 = T 8 +
1

Nc

{
J i, Gi8

}
+

1

N2
c

{
J2, T 8

}

M27 =
1

Nc

{
T 8, T 8

}
+

1

N2
c

{
T 8,

{
J i, Gi8

}}

M64 =
1

N2
c

{
T 8,

{
T 8, T 8

}}

8 independent operators ↔ 8 masses:
N, Λ, Σ, Ξ, ∆, Σ∗, Ξ∗, Ω
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Baryon Mass Hierarchy NF = 3

Unknown coefficient multiplies each operator:
order in 1/Nc and in SU(3) flavor breaking
predicted

8, 27, 64 operators are first, second, third order in
SU(3) flavor breaking parameter ε ∼ ms/ΛQCD ∼ 30%

Order in 1/Nc given by explicit factor of 1/Nc

times leading Nc-dependence of operator matrix
element 〈O〉
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Baryon Mass Hierarchy NF = 3

Each operator contributes to unique linear combination of

masses

J2

Nc
:

1
8

(2N + Λ + 3Σ + 2Ξ) − 1
10

(4∆ + 3Σ∗ + 2Ξ∗ + Ω)

Define dimensionless quantity
∑

Bi∑ |Bi|/2

Theory: 1/N2
c Expt: (18.21 ± 0.03)%
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Baryon Mass Hierarchy

Mass Splitting 1/Nc Flavor Expt.
5
8
(2N + 3Σ + Λ + 2Ξ) − 1

10
(4∆ + 3Σ∗ + 2Ξ∗ + Ω) Nc 1 *

1
8
(2N + 3Σ + Λ + 2Ξ) − 1

10
(4∆ + 3Σ∗ + 2Ξ∗ + Ω) 1/Nc 1 18.21 ± 0.03%

5
2
(6N − 3Σ + Λ − 4Ξ) − (2∆ − Ξ∗ − Ω) 1 ε 20.21 ± 0.02%

1
4
(N − 3Σ + Λ + Ξ) 1/Nc ε 5.94 ± 0.01%

1
2
(−2N − 9Σ + 3Λ + 8Ξ) + (2∆ − Ξ∗ − Ω) 1/N2

c ε 1.11 ± 0.02%

5
4
(2N − Σ − 3Λ + 2Ξ) − 1

7
(4∆ − 5Σ∗ − 2Ξ∗ + 3Ω) 1/Nc ε2 0.37 ± 0.01%

1
2
(2N − Σ − 3Λ + 2Ξ) − 1

7
(4∆ − 5Σ∗ − 2Ξ∗ + 3Ω) 1/N2

c ε2 0.17 ± 0.02%

1
4
(∆ − 3Σ∗ + 3Ξ∗ − Ω) 1/N2

c ε3 0.09 ± 0.03%

(From Jenkins & Lebed)
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Baryon Mass Hierarchy

1

N2
c

:
ε

Nc
:

ε

N2
c

:
ε

N3
c

:
ε2

N2
c

:
ε2

N3
c

:
ε3

N3
c
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Isospin Splittings

Jenkins and Lebed

Get relations that work to 0.1 MeV accuracy. Clear
evidence for the 1/N hierarchy. Many relations cannot
be tested because the baryon masses are not
well-measured.
One prediction, that the Coleman-Glashow relation

(p− n)− (
Σ+ − Σ−)

+
(
Ξ0 − Ξ−)

should work more accurately, because it is of order
εε′/Nc has been confirmed recently due to a more
accurate measurement of the Ξ0 mass.
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Baryon Axial Vector Couplings

Octet (B) and Decuplet (T) baryons have an
interaction

2D Tr B̄Sµ {Aµ, B}+ 2F Tr B̄Sµ [Aµ, B]

+C
(
T̄ µAµB + B̄AµT

µ
)

+ 2H T̄ µSνAνTµ

Large Nc predicts (to an accuracy 1/N 2
c )

F/D = 2/3, C = −2D, H = −3F .

which agrees with experimental fit using chiral
perturbation theory.
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A more detailed analysis including SU(3) breaking
gives a good description of the data.
One result (to all orders in SU(3) breaking) is that
the pion coupling has the form

g = Nc

(
A + B

S

Nc

+ . . .

)

g(Σ∗ → Σπ) − g(∆ → Nπ) = g(Ξ∗ → Ξπ) − g(Σ∗ → Σπ)

g(Σ∗ → Σπ) = g(Σ∗ → Λπ).
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Isovector Magnetic Moments

Isovector 1/Nc Flavor Expt.

V1 (p − n) − 3(Ξ0 − Ξ−) = 2(Σ+ − Σ−) 1/Nc − 10 ± 2%

V2 ∆++ − ∆− = 9
5
(p − n) 1/Nc −

V3 ΛΣ∗0 = −√
2ΛΣ0 1/Nc −

V4 Σ∗+ − Σ∗− = 3
2
(Σ+ − Σ−) 1/Nc −

V5 Ξ∗0 − Ξ∗− = −3(Ξ0 − Ξ−) 1/Nc −
V6

√
2(ΣΣ∗+ − ΣΣ∗−) = (Σ+ − Σ−) 1/Nc −

V7 ΞΞ∗0 − ΞΞ∗− = −2
√

2(Ξ0 − Ξ−) 1/Nc −
V8 −2ΛΣ0 = (Σ+ − Σ−) 1/Nc − 11 ± 5%

V9 p∆+ + n∆0 =
√

2(p − n) 1/Nc − 3 ± 3%

V101 (Σ+ − Σ−) = (p − n) 1 − 27 ± 1%

V102 (Σ+ − Σ−) =
(
1 − 1

Nc

)
(p − n) 1 ε 13 ± 2%
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Isoscalar Magnetic Moments

Isoscalar 1/Nc Flavor Expt.

(p + n) − 3(Ξ0 + Ξ−) = −3Λ + 3
2
(Σ+ + Σ−) − 4

3
Ω− 1/N2

c − 4 ± 5%

∆++ + ∆− = 3(p + n) 1/N2
c −

2
3
(Ξ∗0 + Ξ∗−) = Λ + 3

2
(Σ+ + Σ−) − (p + n) + (Ξ0 + Ξ−) 1/N2

c −
Σ∗+ + Σ∗− = 3

2
(Σ+ + Σ−) + 3Λ 1/N2

c −
3√
2
(ΣΣ∗+ + ΣΣ∗−) = 3(Σ+ + Σ−) − (Σ∗+ + Σ∗−) 1/N2

c −
3√
2
(ΞΞ∗0 + ΞΞ∗−) = −3(Ξ0 + Ξ−) + (Ξ∗0 + Ξ∗−) 1/N2

c −
5(p + n) − (Ξ0 + Ξ−) = 4(Σ+ + Σ−) 1/Nc − 22 ± 4%

(p + n) − 3Λ = 1
2
(Σ+ + Σ−) − (Ξ0 + Ξ−) 1/Nc ε 7 ± 1%
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Additional Relations

Isoscalar/Isovector Relations 1/Nc Flavor Expt.

(Σ+ + Σ−) − 1
2
(Ξ0 + Ξ−) = 1

2
(p + n) + 3

(
1

Nc
− 2

N2
c

)
(p − n) 1 ε 10 ± 3%

∆++ = 3
2
(p + n) + 9

10
(p − n) 1/N2

c − 21 ± 10%
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© = 1/Nc, � = 1/N2
c , � = ε/Nc
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∆ → Nγ

(Jenkins, Ji, AM)

Two helicity amplitudes, and one finds

A3/2

A1/2

=
√

3 +O
(

1

N2
c

)

= 1.73(1.89± 0.10)

Equivalently,

E2

M1
= O

(
1

N2
c

)

= −0.025± 0.005
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Nucleon-Nucleon Potential

D.B. Kaplan & AM

VNN =

V 0
0 + V 0

σ σ1 · σ2 + V 0
LSL · S + V 0

T S12 + V 0
QQ12

+(V 1
0 + V 1

σ σ1 · σ2 + V 1
LSL · S + V 1

T S12 + V 1
QQ12)τ1 · τ2

where

S12 ≡ 3σ1 · r̂ σ2 · r̂− σ1 · σ2

Q12 =
1

2
{(σ1 · L), (σ2 · L)}
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Isospin V0 Vσ VLS VT VQ

1 · 1 Nc 1/Nc 1/Nc 1/Nc 1/N3
c

τ1 · τ2 1/Nc Nc 1/Nc Nc 1/Nc

The potential in the large Nc limit has Wigner
supermultiplet symmetry under which the p ↑ p ↓, n ↑,
n ↓ transform as a 4 of SU(4).
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Fit to parameters in the Nijmegen potential

1

1/3

gε gρgω gP fρ

   0

gf0
fωga0

ga2
gφ
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I = J Rule

Mattis, Braaten

Mattis’ I = J Rule and its generalization:
Couplings are of order N 1−|I−J |/2.

e.g the ρ is I = 1, so the dominant ρ coupling is J = 1,
i.e. magnetic moment-like (F2 form factor). The ω

has I = 0, and its dominant coupling is J = 0, i.e.
charge-like (F1).

For the ρ, F2/F1 ∼ 3

For the ω, F1/F2 ∼ 3.
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Heavy Baryons

Jenkins

Form a 3 ΛQ and ΞQ and a 6, ΣQ, Ξ′
Q, ΩQ (and

their spin-3/2 partners).

Heavy-quark hyperfine splittings (Σ∗
Q − ΣQ) are

150 MeV for the c, and 60 MeV for the b

Light-quark hyperfine splittings (Ξ′
Q − ΞQ) are

150 MeV.

In this case, results before the measurements.
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Can relate the pion couplings of heavy baryons to
those of the p up to corrections of order 1/Nc

(rather than 1/N 2
c ).

Obtain mass relations for heavy baryons, e.g.

1

3

(
ΣQ + Σ∗

Q

)
=

2

3
(∆−N) +O

(
1

N2
c

)
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The Ξ′
c mass was predicted to be 2580± 2.1 MeV

before the measurement of 2576.5± 2.3 MeV.

Predictions for other c baryon masses, and all the
b baryon masses in terms of the Λb mass.
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Conclusions

1/Nc expansion useful and predictive for QCD baryons, and

most of the spin-flavor structure of baryons can be

understood using the 1/Nc expansion.

1/Nc hierarchy evident in baryon masses, axial couplings and

magnetic moments

Intricate pattern of spin-flavor breaking since 1/Nc and

SU(3) breaking comparable. Restricts the form of SU(3)
breaking, and so is important in understanding baryon chiral

perturbation theory

Provides a unifying symmetry that connects QCD with

various models such as the quark and Skyrme model.
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