Experimental constraints on the Equation of State

LIGO Detects a Neutron Star Merger

¹³²Sn+¹²⁴Sn @ E/A=270 MeV

Betty Tsang, NSCL Michigan State University

INT-JINA Workshop: 3/12-14/18

Equation of State and Dynamics of the Merger

D Kasen et al. Nature 551, 80-84 (2017) doi:10.1038/nature24453

Fate of a Neutron Star Merger: n-star, black hole or transient?

EOS from dynamics of N-star merger and from nuclear collisions

N-Star merger: 10⁸ year; Observation Estimates: <10/year

Nuclear-collisions: 10⁻²¹ sec; 10⁶ collisions per experiment

Femto-nova explosion created by Heavy Ion collisions

Equation of State of nuclear matter $E/A (\rho, \delta) = E/A (\rho, 0) + \delta^2 \cdot S(\rho)$ $\delta = (\rho_n - \rho_p) / (\rho_n + \rho_p) = (N-Z)/A$

The physics, (symmetry energy), that governs the neutrons skin thickness of ²⁰⁸Pb is the same as that governing the neutron star radius

C.J. Horowitz, J. Piekarewicz, PRL 86 (2001) 5647

Parity Radius Experiment (P-ReX)

Zenihiro et al.: Phys. Rev. C82, 044611 (2010)

Symmetry Energy

$$B = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}}$$
$$-a_{sym} \frac{(A-2Z)^2}{A}$$
$$(a_{sym}^V A - a_{sym}^S A^{2/3}) \frac{(A-2Z)^2}{A^2}$$
$$Inclusion of surface terms in symmetry$$

Hubble ST

Alex Brown PRL 111, 232502 (2013)

Use Skyrme interactions that fit the masses of double magic nuclei

Masses and skin data are sensitive to ρ ~0.65 ρ_0 E_{sym}(ρ ~0.65 ρ_0) ~25 MeV

Symmetry Energy Constraints from masses

Experimental Observables: n/p yield ratios

•n and p potentials have opposite sign.

•*n* & *p* energy spectra depend on the symmetry energy \rightarrow softer density dependence emits more neutrons at low density. $S(\rho)=12.5(\rho/\rho_{o})^{2/3}+17.6(\rho/\rho_{o})^{\gamma_{i}}$

Isospin Diffusion to constrain low density EoS

Isospin Diffusion; low ρ , E_{beam}

Tsang et al., PRL 92 (2004) 062701

Density dependence of Symmetry Energy at subsaturation density

Isospin Diffusion

Density dependence of Symmetry Energy at subsaturation density

Current Status: Density dependence of Symmetry Energy @ $\rho < \rho_0$

Large uncertainties above ρ_0 . Need high energy heavy ion collisions to access this regions, especially $\rho \sim 2\rho_0$ where neutron star radius is sensitive to.

Au+Au collisions 400 MeV/u b=5 fm

0.00fm/c

Nucleon 🧶 Baryon 🔎 Meson 🔅

0 5 fm ⊥⊥⊥⊥⊥

Experimental Setup

Primary	Beam	Target	E _{beam} /A	δ_{sys}	evt(M)	2016
¹²⁴ Xe	¹⁰⁸ Sn	¹¹² Sn	269	0.09	8	4/30-5/4
	¹¹² Sn	¹²⁴ Sn	270	0.15	5	5/4-5/6
²³⁸ U	¹³² Sn	¹²⁴ Sn	269	0.22	9	5/25-5/29
	¹²⁴ Sn	¹¹² Sn	270	0.15	5	5/30-6/1
Z=1,2,3			100, 200		0.6	6/1

Other Participants: H. Baba, Chica, Ichihara, Kondo, T. Nakamura, H. Otsu, Saito, Togano NeuLAND Collaboration: Leyla Atar, Tom Aumann, Igor Gasparic, A. Horvat, H. Scheit

On Site Experimenters J. Barney (MSU) G. Cerizza (MSU) J. Estee (MSU) B. Hong (Korea U) T. Isobe (RIKEN)* G. Jhang (Korea U) M. Kaneko (Kyoto U) M. Kurata-Nishimura (RIKEN) P. Lasko (IFN, Krakow) H. Lee (RISP) J. Lee (Korea U) J. Lukasik (IFN, Krakow) W. Lynch (MSU)* A. McIntosh (TAMU) P. Morfouace (MSU) T. Murakami (Kyoto U)* S. Nishimura (RIKEN) P. Pawlowski (IFN, Krakow) C. Santamaria (MSU) R. Shane (MSU) D. Suzuki (RIKEN) B. Tsang (MSU)* Y. Zhang (Tsinghua U) *spokespersons

Particle ID spectra

dE/dx (ADC/mm)

Need more analysis and understanding especially on detector and analysis efficiencies

Symmetry energy is not an observable. We have to use (ADC/mm) transport models to simulate the reactions and compare to data. Mean field (symmetry JE/dx energy) plus others parameters are input to the transport models. Need to have different transport models under control?

Heavy Ion Collisions

- 1. Experimental Data -- > Detectors to measure species, momentum and angular distributions of emitted fragments
- 2. Simulate HIC with Transport models which allow the study of input parameters and ingradient of models: Nuclear Equation of state; In medium masses and cross sections; N/Z dependence of the asymmetry energy; Fragment and isotopic yields
- 3. Comparison of results to data

Transport Code Evaluation Project

Writing group

B. Tsang, H. Wolter, Y.X. Zhang², J. Xu¹, M. Colonna, P. Danielewicz, A Ono, Y.J. Wang

			Box			
BUU Type	Code	flow	casc	Vlac	nion	
		pub	pub	v las	pion	
BUU-VM ^a	S. Mallik		X	Χ	X	
BLOB	P. Napolitani	Χ				
GIBUU-RMF	J. Weil	X	X			
GIBUU-Sky	J. Weil	Χ				
IBL	W.J. Xie	X				
IBUU	J. Xu	Χ	Χ	Χ	Х	
pBUU	Danielewicz	X	X	X	X	
RBUU	K. Kim	Χ				
RVUU	C.M. Ko	X	X	X	X	
SMASH	Oliinychenko		X			
SMF	M. Colonna	X	X	X	X	

	Code		Box			
QMD Type		flow	casc	Vloc	pion	
		pub	pub	v las		
ImQMD	Y.X. Zhang	X	X	X		
IQMD-BNU	J. Su	Χ	Χ	Х		
IQMD	C. Hartnack	X				
IQMD-IMP	Z.Q. Feng	X	X	Х	X	
IQMD-SINAP	G.Q. Zhang	Χ				
JAM	A. Ono		Χ	Х	Χ	
JQMD	T. Ogawa		X	X	X	
TuQMD	D. Cozma	Χ	Χ	Х	Χ	
UrQMD	Y.J. Wang	X	X	Χ	X	

Pub: Xu et al., PRC.93.044609 **Pub :** Zhang et al., arXiv:1711.05950

Summary and Outlook

Laboratory measurements have provided constraints on the symmetry energy and the equation of state for neutron-rich matter.

- Significant constraints at sub-saturation densities.
- Constraints on effective mass splitting around and above saturation densities.
- The important density range of $\rho_0 \le \rho \le 2\rho_0$ is accessible via heavy ion reaction.
 - Experimental results from SpiRIT!
- Improving the reliability of transport theory predictions.
 - Code evaluation project is making significant progress in this direction.
- What do we learn about EoS from neutron star merger observations?

Code Evaluation Project I, PhysRevC.93.044609

Code Evaluation Project II -- Box Simulations on Collisions w/wo Pauli Blocking

Comparison to Analytical limits : Zhang et al., arXiv:1711.05950

Code Evaluation Project II -- Box Simulations on Collisions w/wo Pauli Blocking

Comparison to Analytical limits : **Zhang et al., arXiv:1711.05950**

With Pauli Blocking: Results are different from analytical limits unless special procedures are employed.

Images from A. Ono

Femto-nova explosion created by Heavy Ion collisions

Reaction Dynamics

Mean Field : low density: attractive high density: repulsive NN collisions: repulsive Pauli Blocking

Initialization

Isolate effects from mean field and nucleon-nucleon collisions

Images from H. Wolter

