The neutron-star equation of state from chiral EFT and constraints from gravitational waves from neutron-star mergers

Ingo Tews

In collaboration with J. Margueron, S. Reddy, J. Carlson, S. Gandolfi

INT-JINA Symposium: First multi-messenger observations of a neutron star merger and its implications for nuclear physics,

> March 12-14, 2018, Institute for Nuclear Theory, Seattle

Chiral effective field theory for nuclear forces

See talks by Kai Hebeler, Stefano Gandolfi.

Systematic expansion of nuclear forces:

- \triangleright Pions and nucleons as explicit degrees of freedom
- \triangleright Power counting scheme
- \triangleright Can work to desired accuracy with systematic error estimates
- \triangleright Natural hierarchy of nuclear forces
- \triangleright Consistent interactions: Same couplings for two-nucleon and many-body sector
- \triangleright Fitting: NN forces in NN system (NN phase shifts), 3N forces in $3N/4N$ system (Binding energies, radii)

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

INSTITUTE for **NUCLEAR THEORY**

Recent results for Quantum Monte Carlo calculations of nuclei:

Excellent description of binding energies and charge radii for $A \leq 16$.

Lonardoni et al., arXiv:1709.09143 and 1802.08932

Results

- \triangleright Chiral interactions at N²LO simultaneously reproduce the properties of A \leq 16 systems and of neutron matter (uncertainty estimate as in E. Epelbaum et al, EPJ (2015)).
- \triangleright Uncertainty from nuclear interactions grows fast with density and limits applicability of nuclear ab initio calculations.

Neutron Star EOS

Ø Extend results to beta equilibrium (small Y*e*,*p*) and include crust EOS

 \triangleright Extend to higher densities, e.g.,

- using piecewise polytropic expansion Hebeler et al., PRL (2010) and APJ (2013)
- using speed-of-sound IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923
- Meta-EOS based on empirical parameters Margueron et al., PRC 97, 025805 & 025806 (2018)

IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923

Kurkela et al. (2010) Bedaque & Steiner (2015) Use the speed of sound to extend EOS:

- \triangleright Assume some general form for speed of sound above transition density, e.g. Gaussians, linear segments, etc.
- \triangleright Sample many different curves and reconstruct EOS.
- \triangleright Can easily include phase transitions.
- \triangleright Loose information on degrees of freedom.

Meta-EOS based on the nuclear empirical parameters (MM-EP)

Some empirical parameters are not well constrained by nuclear physics experiments:

- \triangleright Generate uncertainties in the extrapolation to high density and large isospin asymmetry.
- The impact of these uncertainties on the nuclear EOS are determined from a meta-modelling.

Margueron, Casali, Gulminelli, PRC 97, 025805 & 025806 (2018)

Assumptions

IT, Carlson, Gandolfi, Reddy, arXiv:1801.01923

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

 (2010)

A Massive Pulsar in a (2013) **Compact Relativistic Binary**

John Antoniadis,* Paulo C. C. Freire, Norbert Wex, Thomas M. Tauris, Ryan S. Lynch, Marten H. van Kerkwijk, Michael Kramer, Cees Bassa, Vik S. Dhillon, Thomas Driebe, Jason W. T. Hessels, Victoria M. Kaspi, Vladislav I. Kondratiev, Norbert Langer, Thomas R. Marsh, Maura A. McLaughlin, Timothy T. Pennucci, Scott M. Ransom, Ingrid H. Stairs, Joeri van Leeuwen, Joris P. W. Verbiest, David G. Whelan

Generate thousands of EOSs that:

 \triangleright Are consistent with low-density results from chiral effective field theory up to 1-2 n₀.

- Are causal ($c_s^2 \leq 1$) and stable ($c_s \geq 0$ inside neutron stars).
- \triangleright Support 1.9 solar-mass neutron stars.

Comparison of models: $n_{tr} = n_0$

Chiral EFT constraint up to saturation density:

- Ø Good agreement of different models!
- \triangleright Different degrees of generalization: from nuclear degrees of freedom (black band) up to very general model with regions of softening and phase transition, etc.

Comparison of models: $n_{tr} = 2n_0$

Chiral EFT constraint up to twice saturation density:

- \triangleright Good agreement of different models!
- \triangleright Different degrees of generalization: from nuclear degrees of freedom (black band) up to very general model with regions of softening and phase transition, etc.

Constraint from GW170817

GW170817 provides constraints on the tidal polarizability ($n_{tr} = n_0$):

 \triangleright Constrains the radius of a typical neutron star to be less than 13.5 km. See talks by K. Hebeler, J. Lattimer

Predictions based on GW170817 posterior for NS masses

LIGO/VIRGO collaboration, PRL (2017)

Study GW170817:

- Obtain tidal polarizabilities using mass distributions of GW170817.
- \triangleright We do not include prior on $\overline{\Lambda}$ from LIGO observation!

Predictions based on GW170817 posterior for NS masses

Study GW170817:

- \triangleright Obtain tidal polarizabilities using mass distributions of GW170817.
- \triangleright We do not include prior on $\overline{\Lambda}$ from LIGO observation!

Predictions based on GW170817 posterior for NS masses: $n_{tr} = n_0$

'Trust' nuclear physics up to saturation density:

- \triangleright Large range of tidal polarizabilities allowed, depending on freedom in high-density models
- \triangleright In this case, GW170817 provides constraints for the EOS.

Predictions based on GW170817 posterior for NS masses: $n_{tr} = n_0$

'Trust' nuclear physics up to saturation density and enforce $\tilde{\Lambda} \leq 800$:

- \triangleright Large range of tidal polarizabilities allowed, depending on freedom in high-density models
- \triangleright In this case, GW170817 provides constraints for the EOS.

Predictions based on GW170817 posterior for NS masses: $n_{tr} = 2n_0$

'Trust' nuclear physics up to twice saturation density:

- \triangleright Range of tidal polarizabilities drastically reduced, consistent for different high-density models.
- EOSs fully consistent with GW170817 without information on Λ .

Predictions based on GW170817 posterior for NS masses: $n_{tr} = 2n_0$

'Trust' nuclear physics up to twice saturation density:

- \triangleright Range of tidal polarizabilities drastically reduced, consistent for different high-density models.
- \triangleright EOSs fully consistent with GW170817 without information on Λ .

Maximum mass of the EOS vs. tidal polarizability of 1.35 solar mass star.

Summary

- \triangleright QMC calculations of matter and nuclei with local chiral potentials including NN and 3N forces are a versatile and systematic approach to *ab initio* calculations of nuclei and matter.
- \triangleright Systematic high-density extension needed for reliable study of astrophysical phenomena:
	- We studied extension based on the speed of sound and sampling of the empirical parameters.

 \triangleright There is a sizable uncertainty for nuclear interactions.

 \triangleright Nuclear physics input between 1-2 n₀ will be directly probed in merger observations. We need tighter constraints on $\widetilde{\Lambda}$.

\triangleright We live in exciting times!

Thanks

- \triangleright INT Seattle: S. Reddy
- Ø Technische Universität Darmstadt: K. Hebeler, J. Lynn, A. Schwenk
- Ø Universität Bochum: E. Epelbaum
- ▶ Los Alamos National Laboratory: J. Carlson, S. Gandolfi
- \triangleright University of Guelph: A. Gezerlis
- Ø Forschungszentrum Jülich: A. Nogga
- Ø Matej Bel University: E. Kolomeitsev
- \triangleright Stony Brook: J. Lattimer
- \triangleright Yukawa Institute Kyoto: A. Ohnishi

Thanks to FZ Jülich for computing time and NIC excellence project.

Thank you for your attention.

INSTITUTE for **NUCLEAR THEORY**

European Research Council Established by the European Commission

Backup

- \triangleright Additional contributions due to shorter-range 3N forces
- \triangleright Agreement between various approaches

(different way of uncertainty estimate, see EKM, PRC 2015)

 \triangleright Ambiguity in short-range structure leads to additional uncertainty.

Comparison of models: $n_{tr}=n_0$

Chiral EFT constraint up to saturation density:

- \triangleright Good agreement of different models!
- \triangleright Different degrees of generalization: from nuclear degrees of freedom (black band) up to very general model with regions of softening and phase transition, etc.