

LIGO

SEARCHING FOR AND MEASURING GRAVITATIONAL WAVES OPPORTUNITIES AND CHALLENGES

B.S. SATHYAPRAKASH

Bert Elsbach Professor of Physics and Professor of Astronomy and Astrophysics, Penn State University

and

Professor of Physics, Cardiff University

on behalf of the LIGO Scientific Collaboration and Virgo Collaboration

OVERVIEW

LIGO has taken about 165 days worth of data over two observing runs

- made five discoveries of
- LIGO and Virgo jointly took data during 1-25 August 2017
 - A network of three (or more) detectors is essential for full reconstruction of the incident gravitational wave
 - LIGO and Virgo have data sharing agreements
 - they make each others data available within seconds of data taking
 - LIGO and Virgo jointly detected GW170814 and GW170817
- GW170814 another binary black hole merger
 - Idetected in triple coincidence, localized to a factor of 30 better than LIGO alone, 3 detectors give polarization
- GW170817 first observation of a binary neutron star merger
 - beginning of multi-messenger astronomy with gravitational waves

AND THEN THERE WERE THREE ...

GW INTERFEROMETER NETWORK

GEO600

VIRGO

KAGRA

LIGO India

LIGO Livingston

LIGO Hanford

Operational Under Construction Planned

Gravitational Wave Observatories

Credit: LVC/EPO

SENSITIVITY AND DISTANCE REACH TO BINARY NEUTRON STARS

horizon distance of a detector: distance at which a face-on, overhead binary would produce a signal to noise ratio of 8

 distance reach of a detector: a factor 2.33 smaller than horizon distance

Detector	Range	Horizon
LIGO Livingston	100 Mpc	230 Mpc
LIGO Hanford	$50 { m Mpc}$	$115 {\rm Mpc}$
Virgo	$27 { m Mpc}$	63 Mpc

Phys Rev Lett. 119 141101 (2017)

TWO WEEKS INTO THE RUN \ldots

GSTLAL REPORTS A CANDIDATE

GW170814: DETECTION

THREE DETECTOR SIGNAL MODEL IS PREFERRED WITH BAYES FACTOR OF 1600 Signal arrived on August 14, 2017 10:30:43 UTC at Livingston, 8 ms later at Hanford, 14 ms later at Virgo; false alarm rate < 1 in 140,000 years

Phys Rev Lett. 119, 141101 (2017)

THREE DAYS AFTER GW170814 ...

First Cosmic Event Observed in Gravitational Waves and Light

GW170817: AUGUST 17, 2017, 12:41:04 UTC FIRST OBSERVATION OF A NEUTRON STAR INSPIRAL

10

PRL 119, 161101 (2017)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 20 OCTOBER 2017

Ś

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.

(LIGO Scientific Collaboration and Virgo Collaboration)

(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

On August 17, 2017 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^4 years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{\odot} , in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range $1.17-1.60 M_{\odot}$, with the total mass of the system $2.74^{+0.04}_{-0.01}M_{\odot}$. The source was localized within a sky region of 28 deg² (90% probability) and had a luminosity distance of 40^{+8}_{-14} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ -ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ -ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

SIGNAL LASTED FOR SEVERAL MINUTES IN BAND

LVT151012 ~~~~~

GW170817

0 1 2 time observable (seconds)

LIGO/University of Oregon/Ben Farr

SIGNAL LASTED FOR SEVERAL MINUTES IN BAND

LVT151012 ~~~~~

GW170817

0 1 2 time observable (seconds)

LIGO/University of Oregon/Ben Farr

TIME FREQUENCY PLOT OF GW170817

- Signal-to-noise
 ratio of 32.4
 - Ioudest yet
- False alarm rate
 of 1 in 10⁶ yrs
 - most significantof all

DETECTION: STATEMENT OF THE PROBLEM

• detector output consists of:

• only background noise: x(t) = n(t)

 $\cdot harpoonup ha$

- given a detector output which of the two possibilities is more likely given that the noise background is Gaussian and stationary
- formulate the problem as Bayes' theorem:

$$P(h|x) = \frac{P(x|h)P(h)}{P(x)}$$

• posterior prob. = likelihood x prior / evidence

· denominator is: $P(x) = P(x|h)P(h) + P(x|\overline{h})P(\overline{h})$

define likelihood ratio:

$$\Lambda = \frac{P(x|h)}{P(x|n)}$$

 \cdot if signals are rare then

$$P(h) \ll 1$$
 and $P(\overline{h}) = 1 - P(h) \simeq 1$

In that case the posterior prob. of a signal given data is: $P(h|x) = \frac{\Lambda P(h)}{1 + \Lambda P(h)}$

for confident detection

 $\Lambda \gg 1/P(h)$

For a rarer the signal larger should be the likelihood for a given confidence: for 5-sigma detection $P(h|x) \simeq 0.999\,999$ one in a million

COMPUTING THE LIKELIHOOD RATIO

 \cdot noise is a Gaussian random process, so at any instant t_k

$$P(n_k) = \frac{1}{\sqrt{2\pi\sigma_k}} e^{-n_k^2/2\sigma_k^2}$$

 \cdot it is more convenient to deal with Fourier domain quantities N_k (similarly, X_k and H_k):

$$P(N_k) = \frac{1}{\sqrt{2\pi}S_k} e^{-N_k^2/2S_k^2}$$

 \cdot so the probability of getting a sequence $P(\{N_k\})$

$$P(\{N_k\}) = \prod_k \frac{1}{\sqrt{2\pi}S_k} e^{-N_k^2/2S_k^2} \propto e^{-\frac{1}{2}\langle n,n \rangle}$$

 if signal is absent n=x, if signal is present n=x-h:

$$\Lambda = \frac{P(x|h)}{P(x|n)} = \frac{e^{-\frac{1}{2}\langle x-h,x-h\rangle}}{e^{-\frac{1}{2}\langle x,x\rangle}} = e^{\langle x,h\rangle - \frac{1}{2}\langle h,h\rangle}$$

DIFFICULTIES ...

- the likelihood ratio is computationally very expensive:
 - <x, h> would need to be computed at 10's of millions of points in the parameter space (parameters µ) before giving up - signal
 - a scheme would be needed to compute P(xln) background
- hoise is not Gaussian or stationary
 - nothing much can be done about non-stationarity: detector behavior is assumed to be stable over periods ~ days
 - non-Gaussian and non-stationary data is rejected
 - glitch rejection, signal consistency checks, coincidence and coherent analysis, etc.

Phys Rev Lett. 119, 161101 (2017)

A GEOMETRICAL FORMULATION OF DATA ANALYSIS: SIGNAL MANIFOLD

 \cdot detector outputs can be thought of as vectors

• the set of all detector outputs forms a vector space

 \cdot signals are also vectors that live in this vector space

- space of signals forms a manifold: signal parameters (e.g. masses and spins of black holes) are coordinates that determine the dimension of the manifold
- · the scalar product <a,b> can be used to induce a metric on the manifold: $g_{\alpha\beta} = <h_{\alpha}$, $h_{\beta}>$, where $h_{\alpha} = \delta h/\delta \mu_{\alpha}$

• the signal space now acquires a shape

TEMPLATE BANKS FOR COMPUTING $< x, h(\mu) >$

- \cdot volume of the parameter space is: $V = \int \sqrt{g} d^n \mu$
- if each template covers a volume V then the number of templates is:

$$N = \frac{1}{\Delta V} \int \sqrt{g} \,\mathrm{d}^n \mu$$

- but how to choose templates ... template placement problem, a hard problem with only sub-optimal solutions
 - In the space of masses and spins, or something more fancy?
 - a hexagonal lattice, stochastic method, …
- O1 search deployed 250,000 templates for compact binary coalescence searches, O2 about 500,000 templates

MATCHED FILTER SEARCH FOR SIGNALS OF KNOWN SHAPE

GW151226

22

A Gravitational-Wave Early-Warning System

HOW QUICKLY CAN WE ISSUE AN ALERT FOR A GW170817-LIKE EVENT

Single detector SNR

HOW QUICKLY CAN WE ISSUE AN ALERT FOR A GW170817-LIKE EVENT

Single detector SNR

HOW QUICKLY CAN WE ISSUE AN ALERT FOR A GW170817-LIKE EVENT

Single detector SNR

SKY RESOLUTION BEFORE MERGER OF A GW170817-LIKE EVENT

$\Delta\Omega$ at (f=30Hz, t_C=-60s, ι=30 deg) for HILV

SKY RESOLUTION AFTER MERGER OF A GW170817-LIKE EVENT

$\Delta\Omega$ at (f=LSO, t_C=0s, ι=30 deg) for HILV

EARLY WARNING IN THE ERA OF NEXT GENERATION OF DETECTORS

measuring source parameters

MEASURING SOURCE PARAMETERS

• Bayesian analysis is used to infer the posterior probability density of parameters $\mu = \{\mu_1, \mu_2, ..., \mu_n\}$ given the data x:

$$P(h(\mu)|x) = \frac{P(x|h(\mu))P(h)}{P(x)}$$

- → in the case of binary black holes signal parameters are component masses (m_1 , m_2) and spins (S_1 , S_2), eccentricity *e*, sky position (θ, φ), distance *D*, binary orientation angles (ι, δ), time of and phase at coalescence (t_c , $φ_c$); PSD, calibration, etc.
- Ikelihood P(xh(µ)) is very expensive as it requires computing the overlap of millions of waveforms with the data and different signal models

Impossible to compute without fast, analytic waveform models

PARAMETER ESTIMATION USING WAVEFORMS PREDICTED BY GR

Data & Best-fit Waveform: LIGO Open Science Center (losc.ligo.org); Prediction & Animation: C.North/M.Hannam (Cardiff Univers

PARAMETER ESTIMATION USING WAVEFORMS PREDICTED BY GR

Data & Best-fit Waveform: LIGO Open Science Center (losc.ligo.org); Prediction & Animation: C.North/M.Hannam (Cardiff Univers

COMPONENT MASSES

Phys Rev Lett. 119, 161101 (2017)

PROPERTIES OF GW170817: LOW NEUTRON STAR SPIN

	Low-spin priors $(\chi \le 0.05)$
Primary mass m_1	$1.36 - 1.60 \ M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0
Total mass m _{tot}	$2.74^{+0.04}_{-0.01} {M}_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc
Viewing angle Θ	$\leq 55^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800

Phys Rev Lett. 119, 161101 (2017)
PROPERTIES OF GW170817: HIGH NEUTRON STAR SPIN

	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	$1.36-2.26 M_{\odot}$
Secondary mass m_2	$0.86 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.4–1.0
Total mass $m_{\rm tot}$	$2.82^{+0.47}_{-0.09} {M}_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot}c^{2}$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc
Viewing angle Θ	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 1400

Phys Rev Lett. 119, 161101 (2017)

HOW DO WE LOCALIZE A SOURCE?

PhD Thesis: Leo Singer

ANTENNA PATTERN FUNCTIONS

SKY LOCALIZATION EVEN WHEN A DETECTOR DOESN'T "SEE" THE SIGNAL Sky position uncertainty due to LIGO Hanford and Livingston 1.5 Colatitude 0 (in radians) 0.9 0.8 0.7 0.6 0.5 0.5 0 0.4 -0.5 0.3 0.2 0.1 1.5 -3 -2 2 3 Azimuth ϕ (in radians)

SKY LOCALIZATION EVEN WHEN A DETECTOR DOESN'T "SEE" THE SIGNAL Sky position uncertainty due to LIGO Hanford and Livingston 1.5 Colatitude 0 (in radians) 0.9 0.8 0.7 0.6 0.5 0.5 O 0.4 -0.5 0.3 0.2 0.1 1.5 -3 -2 3 Azimuth ϕ (in radians) Sky position when Virgo is added

SKY POSITION AND DISTANCE

GRB IN FERMI AND INTEGRAL 1.7 S AFTER COALESCENCE

Gamma rays, 50 to 300 keV

Fermi

Reported 16 seconds after detection

Counts per second

LIGO-Virgo

Reported 27 minutes after detection

INTEGRAL

Reported 66 minutes after detection

Time from merger (seconds)

GRB 170817A

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20

۲

۲

EQUATION OF STATE OF DENSE NUCLEAR AND OTHER EXTREME MATTER

Tidal deformability λ for realistic EC

sketch: J. Read

 $\lambda = \frac{Q}{\mathcal{E}} = \frac{\text{size of quadrupole}}{\text{strength of extern}}$

 $k_2 \qquad \lambda = \lambda \frac{2}{3} \frac{2}{3} k_2 R^5 R$

 $\Lambda \equiv G\lambda (Gm_{\rm NS}/c^2)^{-5}$ $\Lambda \in [300, 600]$

ACCURATE WAVEFORM MODELS IS KEY TO MEASURING NEUTRON STAR RADIUS

[Bernuzzi+, PRL **115**, 091101 (2015)]

[Hinderer+, PRL **116**, 181101 (2016)]

TIDAL DEFORMABILITY OF NEUTRON STARS

Phys Rev Lett. 119, 161101 (2017)

Equation of state from inspiral radius and tidal deformability part of the waveform from the post-merger signal

Bose+, 2017

VOYAGER: x 3 improvement in aLIGO strain sensitivity

EINSTEIN TELESCOPE: Triangular, 10 km arm length, underground, cryogenic detectors

COSMIC EXPLORER: 40 km arm length, cryogenic, overground interferometer

NEXT GENERATION OF GW DETECTORS

✤ to fully exploit the GW window we will need new facilities

- GWIC formed a subcommittee to develop a vision for the next generation of ground-based detectors
- ✤ one of the charges to the GWIC subcommittee is:
 - * "commission a study of ground-based gravitational wave science from the global scientific community, investigating potential science vs. architecture vs. network configuration vs. cost trade-offs, ..."
 - GWIC subcommittee has constituted five 3G subcommittees:
 - (1) Science Case Team (3G-SCT), (2) R&D Coordination, (3)
 Governance, (4) Agency Interfacing, (5) Community Networking

In the Science Case will be developed by an international consortium of scientists under the leadership of the 3G-SCT (18 members)

for membership of committees see: https://gwic.ligo.org/3Gsubcomm/ WHAT CAN GW ASTRONOMY TELL US?

* fundamental physics

- equation of state of ultra dense matter, dark energy EoS
- gravastars, wormholes, ..., testing non-BH paradigms?

* astrophysics

 formation and evolution of compact binaries, GRB engines, supernovae

* cosmology

- primordial and astronomical GW backgrounds
- * primordial origin of black hole binaries
- standard siren cosmography

LIGO-LIVINGSTON OBSERVATORY

Credit: LIGO Livingston

LIGO-HANFORD OBSERVATORY

Credit: LIGO Hanford

VIRGO AT CASCINA, ITALY

Credit: Virgo

HOW DO WE MEASURE THE BACKGROUND?

• two independent methods are used to measure the background

- method of time-shifts with coincident triggers
- method of likelihood with single detector triggers
- time-shift method
 - change the time stamp of triggers from one detector relative to the other by more than the light travel time between the detectors and then look for coincidence
- Iikelihood method
 - compute the probability density function of non-coincident triggers as a function of their likelihood for each detector; deduce the likelihood of chance coincidence from the distributions

TIME-SHIFT METHOD FOR BACKGROUND ESTIMATION

shift one of the data sets with respect to the other and then look for coincidence - any coincidence now is a false alarm

TIME-SHIFT METHOD FOR BACKGROUND ESTIMATION

Shift one of the data sets with respect to the other and then look for coincidence - any coincidence now is a false alarm

SIGNIFICANCE OF GW170104: TIME-SHIFT METHOD

58

SIGNIFICANCE OF GW170104: LIKELIHOOD METHOD

Bose+ 2017

Bose+ 2017

Bose+ 2017

HOST LOCATED IN NGC 4993

NGC 4993 [NGC 4994]

B.E.

UV: CREDIT NASA AND SWIFT

UV: CREDIT NASA AND SWIFT

-12 -10 -8	-6 -4 -2 0 <i>t-t_c</i> (s	2 4 s)	6	400	600 10 wavelengt)00 2 th (nm)	000
GW							
γ-ray							
Fermi, INTEGRAL, Astrosat, IPN, Insight-HX	XMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Ko	onus-Wind		Г. Г. I		1 1	
X-ray Swift, MAXI/GSC, NuSTAR, Chandra, INTEC	GRAL						
UV Swift, HST			•				
Optical Swope, DECam, DLT40, REM-ROS2, HST, I HCT, TZAC, LSGT, T17, Gemini-South, NTT BOOTES-5, Zadko, iTelescope.Net, AAT, Pi	Las Cumbres, SkyMapper, VISTA, MASTER, M , GROND, SOAR, ESO-VLT, KMTNet, ESO-VS of the Sky, AST3-2, ATLAS, Danish Tel, DFN, T	agellan, Subaru, Pan-STARF T, VIRT, SALT, CHILESCOPI 80S, EABA	ast, , TOROS,				
IR REM-ROS2, VISTA, Gemini-South, 2MASS,	Spitzer, NTT, GROND, SOAR, NOT, ESO-VLT,	Kanata Telescope, HST					•
Radio atca, vla, askap, vlba, gmrt, mwa, lo	OFAR, LWA, ALMA, OVRO, EVN, e-MERLIN, M	leerKAT, Parkes, SRT, Effels	Derg				
-100 -50 0 50 <i>t-t_c</i> (s)		10 ⁻¹	<i>-t_c</i> (days)	100		101	
1M2H Swope	DLT40	VISTA			Chandra	a	I

