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• Sub GeV dark matter 
• Some existing constraints 
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The Dark Side of Neutron Stars
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We review severe constraints on asymmetric bosonic dark matter based on observations of old
neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic
WIMPs can be e�ectively trapped onto nearby neutron stars, where they can rapidly thermalize and
concentrate in the core of the star. If some conditions are met, the WIMP population can collapse
gravitationally and form a black hole that can eventually destroy the star. Based on the existence
of old nearby neutron stars, we can exclude certain classes of dark matter candidates.
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I. INTRODUCTION

Compact stars such as neutron stars and white dwarfs
can lead in general to two types of constraints regard-
ing dark matter candidates. The first one has to do with
annihilating dark matter that changes the thermal evolu-
tion of the star. Annihilation of Weakly Interacting Mas-
sive Particles (WIMPs) that are trapped inside compact
stars, can lead to the production of significant amount of
heat that can change the temperature of old stars [1–4].
Such a phenomenon can be in principle contrasted to ob-
servations. The second type of constraints is related to
asymmetric dark matter [5–12]. Asymmetric dark matter
is an attractive alternative to thermally produced dark
matter especially due to the intriguing possibility of relat-
ing its asymmetry to the baryonic one. For recent reviews
see [13, 14]. Due to the asymmetry, WIMP annihilation is
not significant in this case. If a certain amount of WIMPs
is trapped inside the star, the WIMPs can quite rapidly
thermalize and concentrate within a tiny radius in the
core of the star. If the WIMP population grows signif-
icantly, WIMPs might become self-gravitating and they
might collapse forming a mini black hole. Under certain
conditions, the black hole might consume the rest of the
star, thus leading to the ultimate destruction of the star.
However, very old (older than a few billion years) nearby
neutron stars have been well observed and studied. The
simple presence of such verified old stars leads to the con-
clusion that no black hole has consumed the star and as
we shall argue, this can lead to very severe constraints on
the properties of certain types of asymmetric dark mat-
ter. We should also mention that additional constraints
on asymmetric dark matter can be imposed on di�erent
ways (e.g. from asteroseismology [15–17], from e�ects on
the transport properties of the neutron stars [18] and/or
hybrid dark matter rich compact stars [19, 20]).

One can easily figure out that fermionic WIMPs due
to the fact that they have to overcome Fermi pres-
sure, require a huge number in order to collapse i.e.

⇤
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N ⇥ (Mpl/m)3 where Mpl and m are the Planck mass
and WIMP mass respectively. This number of WIMPs is
very di⇤cult to be accumulated within a few billion years
and with dark matter densities similar to the ones of the
earth. However, this required number for gravitational
collapse is reduced significantly in the case of attractive
Yukawa forces among the WIMPs [8].

II. ASYMMETRIC BOSONIC DARK MATTER

In the case of asymmetric bosonic WIMPs, the neces-
sary WIMP number for collapse is much smaller because
there is no Fermi pressure and only the uncertainty prin-
ciple keeps particles from collapsing. The collapse takes
place once the momentum becomes smaller than the self-
gravitational potential energy.

~
r
<

GMm

r
⇤ M >

M2
pl

m
, (1)

where M = Nm is the total mass of the WIMP cloud.
A more accurate and generic estimate that includes the
e�ect of self-interactions gives [21]

Mcrit =
2

⇥

M2
pl

m

⇤

1 +
�M2

pl

32⇥m2
. (2)

Although self-interactions between WIMPs can be quite
general in nature, without loss of generality, we can as-
sume that the self-interaction can be approximated well
by a �⇧4 interaction term. At the no interaction limit
� = 0 we trivially get the critical mass mentioned above
(up to factors of order one).
The accretion of WIMPs for a typical 1.4MJ 10 km

neutron star taking into account relativistic e�ects has
been calculated in [3]. The total mass of WIMPs accreted
is

Macc = 1.3� 1043
�

⇤dm
0.3GeV/cm3

⇥�
t

Gyr

⇥
f GeV, (3)

where ⇤dm is the local dark matter density, and the “ef-
ficiency” factor f = 1 if the WIMP-nucleon cross sec-
tion satisfies ⌅ > 10�45cm2, and f = ⌅/(10�45cm2) if
⌅ < 10�45cm2.
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Mass accretion rate: 

f = Min [1,
�

10�45 cm2
]where

R = 10 km. Using these standard values, we find

v ⇤ 0.7 . (3)

This implies that the energy that a typical DM particle has at the surface of a neutron star

is

E =
⇤
k2 +m2

� ⇤ 1.4m� , (4)

so we see that the scale of the incident energy of the DM particle is set by its mass and that

typical DM particles are at most semi-relativistic. These incident DM particles will scatter

with the quasi-particles inside the neutron star, lose energy, and become bound to the star.

The next step is DM thermalization with the neutron star. Since the DM particle is at

most semi-relativistic, and it must lose energy in order to be captured by the neutron star,

we will assume that the DM particle is safely non-relativistic for all thermalization time

calculations. As the DM thermalizes, it collects within a sphere of radius rth which satisfies

GM(rth)m�

rth
⇥ 3

2
T , (5)

where M(rth) is the mass of the neutron star enclosed within a radius rth and T is the

temperature of the neutron star. We can estimate this by considering a neutron star with a

constant core density �c = 5� 1038 GeV/cm3 and we find [22]

rth ⇥ 2.2 m

�
T

105 K

⇥1/2 �GeV

m�

⇥1/2

. (6)

This tiny sphere of DM at the center of the neutron star can then begin to self-gravitate

and collapse into a black hole. Gravitational collapse can be accelerated if the captured DM

forms a Bose-Einstein condensate inside the star [16, 18, 26]. Once the black hole is formed,

it must be massive enough to avoid evaporation due to Hawking radiation and then it may

consume the neutron star. The precise experimental signature of a neutron star collapsing

into a black hole is still an interesting, open question.

In previous works, [15, 18], two calculations to constrain the DM-neutron cross section as

a function of DM mass are done: 1) the thermalization time calculation: ⇥ = 1010 years, and

2) an accretion time calculation: ⇥accretion = 1010 years, in which ⇥accretion is the time needed

4

R = 10 km. Using these standard values, we find

v ⇤ 0.7 . (3)

This implies that the energy that a typical DM particle has at the surface of a neutron star

is

E =
⇤
k2 +m2

� ⇤ 1.4m� , (4)

so we see that the scale of the incident energy of the DM particle is set by its mass and that

typical DM particles are at most semi-relativistic. These incident DM particles will scatter

with the quasi-particles inside the neutron star, lose energy, and become bound to the star.

The next step is DM thermalization with the neutron star. Since the DM particle is at

most semi-relativistic, and it must lose energy in order to be captured by the neutron star,

we will assume that the DM particle is safely non-relativistic for all thermalization time

calculations. As the DM thermalizes, it collects within a sphere of radius rth which satisfies

GM(rth)m�

rth
⇥ 3

2
T , (5)

where M(rth) is the mass of the neutron star enclosed within a radius rth and T is the

temperature of the neutron star. We can estimate this by considering a neutron star with a

constant core density �c = 5� 1038 GeV/cm3 and we find [22]

rth ⇥ 2.2 m

�
T

105 K

⇥1/2 �GeV

m�

⇥1/2

. (6)

This tiny sphere of DM at the center of the neutron star can then begin to self-gravitate

and collapse into a black hole. Gravitational collapse can be accelerated if the captured DM

forms a Bose-Einstein condensate inside the star [16, 18, 26]. Once the black hole is formed,

it must be massive enough to avoid evaporation due to Hawking radiation and then it may

consume the neutron star. The precise experimental signature of a neutron star collapsing

into a black hole is still an interesting, open question.

In previous works, [15, 18], two calculations to constrain the DM-neutron cross section as

a function of DM mass are done: 1) the thermalization time calculation: ⇥ = 1010 years, and

2) an accretion time calculation: ⇥accretion = 1010 years, in which ⇥accretion is the time needed

4

Thermalization: 

Self-Gravitation: 

2

One can easily check thatMacc can be larger thanMcrit

practically for all masses larger than ⇤ 100 keV. To form
a black hole, satisfying the condition (2) is necessary but
it is not su⇤cient. One should make sure that after the
WIMPs have been captured, they slow down and ther-
malize with nuclear matter concentrating within a small
thermal radius. Failing to satisfy this condition, even if
the condition (2) is satisfied, does not necessarily lead to
the formation of a black hole, since WIMPs would not be
confined in a tiny region. The thermalization time scale
has been estimated in [5] and [3]

tth = 0.2yr
� m

TeV

⇥2 � ⌅

10�43cm2

⇥�1
⇤

T

105K

⌅�1

. (4)

As one can observe, despite the Pauli blocked interac-
tions between WIMPs and nucleons, unless they are very
heavy, WIMPs thermalize in less than a year. Having
thermalized with nuclear matter, WIMPs concentrate in
the center of the star within a thermal radius that can
be easily obtained by use of the virial theorem

rth =

⇤
9kTc

8⇥G⇤cm

⌅1/2

= 220cm

⇤
GeV

m

⌅1/2 ⇤ Tc

105K

⌅1/2

,

(5)
where k is the Boltzmann constant, Tc is the temperature
at the core of the star, and ⇤c = 5 ⇥ 1038GeV/cm3 is a
typical value for the neutron star core density.

Once the WIMPs are thermalized and if su⇤cient num-
ber is accumulated in the star, there are two di�erent
events that take place, the time order of which depends
on the WIMP mass. One is the self-gravitation of the
WIMP sphere and the second is the formation of a Bose
Einstein condensate (BEC). Self-gravitation takes place
once the mass of the WIMP sphere inside the thermal
radius becomes larger than the mass of the neutron star
within the same radius. In other words, this happens
once WIMPs start feeling strongly their own gravita-
tional field. For this to happen the WIMP sphere should
have a mass that satisfies

Msg >
4

3
⇥⇤cr

3
th = 2.2⇥ 1046 GeV

� m

GeV

⇥�3/2
. (6)

On the other hand, BEC formation takes place once the
WIMP number density is

nBEC ⌅ 4.7⇥ 1028cm�3
� m

GeV

⇥3/2
⇤

Tc

105K

⌅3/2

. (7)

One can easily check that for WIMPs roughly lighter
than 10 TeV, the accumulated WIMPs within rth meet
first the condition for BEC formation. We are going
to study these two cases (m < 10 TeV and m > 10
TeV) separately since events unfold with di�erent order.
For WIMPs lighter than 10 TeV, one can estimate that
the total number of WIMPs needed to form a BEC is
NBEC ⌅ 2 ⇥ 1036. Any accumulated WIMPs on top of

this number goes directly to the ground state of the BEC
state. The radius of the BEC state is

rBEC =

⇤
8⇥

3
G⇤cm

2

⌅�1/4

⌅ 1.6⇥ 10�4

⇤
GeV

m

⌅1/2

cm.

(8)
As it can be seen, rBEC << rth and therefore WIMPs in
the ground state can become self-gravitating much faster
than what Eq. (6) predicts. In fact we can appreciate
this if we substitute rth by rBEC in Eq. (6). This leads
to the condition

M > 8⇥ 1027 GeV
� m

GeV

⇥�3/2
. (9)

If Eqs. (2),(7), and (9) are satisfied, a black hole is going
to be formed. Once the black hole is formed, its fate is
determined by its initial mass Mcrit. One the one hand,
the black hole is accreting dark matter and nuclear mat-
ter from the core of the star. This tends to increase the
black hole mass. On the other hand, emission of photons
and particles in general via Hawking radiation tends to
reduce the mass of the black hole. The black hole mass
evolution is determined by

dM

dt
=

4⇥⇤cG2M2

c3s
� f

G2M2
, (10)

where cs is the sound speed at the core of the star, and
f is a dimensionless number that in general depends on
the number of particle species emitted and the rate of
rotation of the black hole. We have used a spherically
symmetric Bondi accretion of matter into the black hole.
By inspection of Eq. (10) it is apparent that there is a
critical value of the black hole massM above which accre-
tion always wins, while below, Hawking radiation reduces
the mass of the black hole which in turn it increases even
further the rate of Hawking radiation leading eventually
to the evaporation of the black hole. This critical mass
has been estimated if one considers only photons in [6]

M > 5.7⇥ 1036 GeV. (11)

The mass becomes slightly larger [10] if one includes also
other species that can be emitted (e.g gravitons, neutri-
nos, quarks, leptons etc). Comparison of Eq. (2) (with
� = 0) to Eq. (11) shows that WIMP masses larger than
16 GeV lead to black hole masses below the limit of
Eq. (11). This means that for masses larger than 16
GeV, black holes evaporate and their e�ect is to heat up
the star as they evaporate. However this does not lead to
a dramatic e�ect like the destruction of the star. This 16
GeV mass limit becomes slightly smaller if more Hawking
radiation modes are included.
Finally there is one last constraint that should be sat-

isfied. WIMP masses cannot be arbitrarily small because
for small WIMP masses, after WIMPs have thermalized,
those in the tail of the Maxwell-Boltzmann distribution
have large enough velocities to escape from the star.
This evaporation e�ect can be ignored for WIMP masses

rth ⇡ meters

r N
S
⇡

10
km

Bose Einstein Condensation: 

BEC

rBEC ⇡ 10�4 cm

MBEC > 8⇥ 1027
⇣

GeV

m

⌘1.5
GeV

For a concise recent review see Kouvaris (2013)

Formation of BEC triggers collapse.  



Black-hole Formation 
Idea:  Asymmetric bosonic dark matter can induce the  collapse of the 
NS to a black hole.    Goldman & Nussinov (1989)

This idea has 
been explored in  
more detail by: 

• Kouvaris and Tinyakov (2011)
• McDermott, Yu and Zurek (2012)
• Kouvaris (2012) & (2013)
• Guver, Erkoca, Reno, Sarcevic (2012) 
• Fan, Yang, Chang (2012)
• Bell, Melatos and Petraki (2013)
• Jamison (2013) 
•Bertoni, Nelson, Reddy (2015)
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FIG. 1: Exclusion regions of the asymmetric bosonic dark
matter as a function of the WIMP mass and the WIMP-
nucleon cross section for an isolated neutron star at local DM
density ⇢dm = 0.3GeV/cm3 (such as J0437-4715 and J0108-
1431) and for a neutron star in the core of a globular cluster
with ⇢dm = 103GeV/cm3.

m > 2 keV [6]. If the accreted dark matter mass within
a billion years Macc is larger than Mcrit of Eqs. (2), and
(7), (9), and (11) are satisfied, the WIMPs form a black
hole that can destroy the star. There are some subtle is-
sues regarding how fast the black hole consumes the star
that have been addressed to some extend in [6]. The con-
straints on asymmetric bosonic dark matter are depicted
in Fig. 1. As it can be seen, depending on the WIMP-
nucleon cross section, WIMP candidates from 100 keV up
to roughly 16 GeV are severely constrained by the exis-
tence of nearby old neutron stars. The constrained region
is bound at 100 keV due to the fact that below that mass
accretion is not su⇥cient to acquire Mcrit from Eq. (2).
These constraints can be enlarged down to 2 keV (the
limit from WIMP evaporation we mentioned before) as
long as we consider old neutron stars in globular clusters
with ⇥dm & 30 GeV/cm3.

Now we can consider the case where the WIMP mass
is larger than 10 TeV and therefore self-gravitation of
the WIMP sphere happens before BEC formation. As
we mentioned above, black holes of critical mass (2) with
WIMP masses roughly larger than ⇥ 16 GeV, do not
survive due to Hawking radiation. Therefore one should
expect that black holes of Mcrit (of Eq. (2)) formed out
of 10 TeV WIMPs (or heavier) would evaporate quite
fast. However, since self-gravitation takes place before
BEC, and the self-gravitating mass of Eq. (6) for m > 10
TeV is much larger than the crucial mass for the survival
of the black hole of Eq. (11), there were speculations in
the literature [7, 9, 10] that constraints can be imposed
also for m > 10 TeV. The claim was that instead of
forming a black hole of Mcrit that is below the surviving
threshold for Hawking radiation, a much larger black hole
coming from the collapse of the self-gravitating WIMP
sphere Msg forms, that due to its larger mass can grow

and destroy the star, thus imposing constraints on this
part of the parameter space of asymmetric bosonic dark
matter. However we review here the argument that was
put forward in [23] that demonstrates that the formation
of smaller (non-surviving) black holes of mass Mcrit is
unavoidable and therefore the Msg instead of collapsing
to a single large black hole, it forms a series of black holes
of Mcrit that evaporate one after the other, thus resulting
to no constraint for WIMP masses with m > 10 TeV.

In order for the WIMP sphere to collapse,
the whole mass should be confined within the
Schwarzschild radius rs = 2GM of the black hole.
The density of WIMPs just before forming the
black hole would be nBH ⇥ 3(32�G3M2

sgm)�1 ⇥
1074 cm�3(GeV/m)(Msg/1040GeV)�2. It is easy to see
that this density is higher from the density required for
BEC formation of Eq. (7). This means that unless the
WIMP sphere collapses violently and rapidly, it should
pass from a density where BEC is formed. As the self-
gravitating WIMP sphere of mass Msg contracts, at some
point it will reach the density where BEC is formed. Any
further contraction of the WIMP sphere will not lead
to an increase in the density of the sphere. The density
remains that of BEC. The formation of BEC happens
on time scales of order [22] tBEC ⇥ ~/kBT ⇥ 10�16s,
i.e. practically instantaneously. Further shrinking of
the WIMP sphere results in increasing the mass of the
condensate rather than the density of non-condensed
WIMPs. This process happens at a time scale which is
determined by the cooling time of the WIMP sphere as
discussed below. As we shall show, this cooling time
is the relevant time scale for the BEC formation. As
in the previous case, the ground state will start being
populated with WIMPs which at some point will become
self-gravitating themselves. This of course will happen
not when Eq. (9) is satisfied. Eq. (9) was derived
as the WIMP ground state becomes denser than the
surrounding nuclear matter (since the dark matter that
is not in the ground state of the BEC is less dense).
Here, the condition is that the density of the ground
state of the BEC should be larger than the density of the
surrounding dark matter (that is already denser than
the nuclear matter at this point). The condition reads

MBEC, sg =
4�

3
nBECmr3BEC = 9.6�1021GeV

� m

10TeV

⇥�7/8
.

(12)
Once the BEC ground state obtains this mass, the ground
state starts collapsing within the collapsing WIMP
sphere. Any contraction of the WIMP sphere does not
change the density of the sphere but only the density
of the ground state. MBEC, sg is smaller than Mcrit and
therefore the BEC ground state cannot form a black hole
yet. However as the ground state gets populated at some
point it reaches the point where its mass is Mcrit and this
leads to the formation of a black hole of mass Mcrit and
not Msg. The evaporation time for such a black hole of

Existence of old neutron 
stars with estimated ages 
~ 1010  years provide 
strong constraints on 
asymmetric DM.  

Kouvaris (2013)
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We calculate the rate of production of hypothetical light vector bosons (LVBs) from nucleon-
nucleon bremsstrahlung reactions in the soft radiation limit directly in terms of the measured
nucleon-nucleon elastic cross sections. We use these results and the observation of neutrinos from
supernova SN1987a to deduce constraints on the couplings of vector bosons with masses . 200 MeV
to either electric charge (dark photons) or to baryon number. We establish for the first time strong
constraints on LVB that couple only to baryon number, and revise earlier constraints on the dark
photon. For the latter, we find that the excluded region of parameter space is diminished by about
a factor of 10.

I. INTRODUCTION

The detection of about 20 neutrinos over about 10 seconds from supernova SN87a confirmed in broad-brush the paradigm
for core-collapse supernova in which the neutrinos carry away the bulk of the gravitational binding energy ƒ 3 ≠ 5 ◊ 1053

ergs of the neutron star. The time scale associated with this intense neutrino emission is determined by neutrino di�usion in
the hot and dense core of the newly born neutron star called the proto-neutron star[1]. During this phase, the emission of
other weakly interacting particles, were they to exist, could sap energy from the core and reduce the number and time scale
over which neutrinos would be detectable. This allows one to extract useful constraints on the coupling of these hypothetical
particles for masses up to about 200 MeV from the neutrino signal observed from SN87a. Now widely referred to as the
supernova cooling constraint [2], it has provided stringent constraints on the properties of QCD axions [3], the size of large
gravity-only extra-dimensions into which light Kaluza-Klein gravitons could be radiated [4, 5], light supersymmetric particles
such as neutralinos [6], and more recently on the properties of dark photons [7–9].

Observations of galaxy rotation curves, the motion of galaxies in clusters, gravitational lensing, and the remarkable success
of the �CDM model of the early universe (see Ref. [10] for a pedagogic review), combined with the direct empirical evidence
from the bullet cluster [11] indicates the existence of dark matter (DM) which interacts with ordinary matter through
gravitational interactions. This has spurred much recent research in particle physics and a plethora of DM models have been
proposed that also naturally predict non-gravitational interactions. In a class of these models, DM is part of neutral hidden
sector which interacts with standard model (SM) particles through the exchange of light vector bosons (LVBs) that couple
to SM conserved currents [12–15]. Here, DM is charged under a local U(1) and from a phenomenological perspective, it is
convenient to consider two possibilities. One in which the mediator couples to the SM electric charge Q, called the dark
photon “

Q

and is described by the spin-one field A

Õ
µ

. The other in which the mediator couples only to baryon number, which
is sometimes referred to as the leptophobic gauge boson “

B

and is described by the field B

µ

.
At low energy it su�ces to consider minimal coupling of the LVBs to charge and baryon number described by the lagrangian

L ∏ g

Q

A

Õ
µ

J

EM

µ

+ g

B

B

µ

J

B

µ

≠ 1
2m

2

“

Q

A

Õ
µ

A

Õµ ≠ 1
2m

2

“

B

B

µ

B

µ

,

(1)

which also includes mass terms for the gauge bosons. Of the two LVBs, the dark photon has been studied extensively and is
usually discussed as arising from kinetic mixing of a dark sector gauge boson with the photon [16]. This mixing is described
by the term ‘

Q

F

Õ
µ‹

F

µ‹ in the low energy lagrangian where F

µ‹ and F

Õ
µ‹

are the field tensors associated with the ordinary
photon field and dark photon field, respectively. The Yukawa coupling in Eq. 1 g

Q

= ‘

Q

e where e =
Ô

4fi–

em

is the electric
charge. To simplify notation, and for later convenience, we shall also introduce the parameter ‘

B

and write the Yukawa
coupling of leptophobic gauge boson as g

B

= ‘

B

e.

ú
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Dark Photons 

Figure 7. Systematic uncertainties (green region) encompassing our “robustly excluded zone” (blue).
The true boundary likely lies somewhere in the green region; we show our fiducial profile as the dotted
black line. The blue area is excluded regardless of the perturbations we make to the physical inputs. We
compare to bounds from other stars [17], decays to three photons on cosmological timescales [51, 52],
and beam dumps, meson decays, and other terrestrial experiments [4]. The comparison of the electron
anomalous magnetic moment in two di↵erent systems is shown in the hatched region, which has not
previously been shown in this mass range.

this model and rescale by the abundance from resonant production in the early Universe [51],

we obtain the lower bound of this region. Requiring ⌧  1 sec so that decays do not inter-

rupt nucleosynthesis gives the upper line of this gray region [51]. We caution that threshold

– 19 –
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to either electric charge (dark photons) or to baryon number. We establish for the first time strong
constraints on LVB that couple only to baryon number, and revise earlier constraints on the dark
photon. For the latter, we find that the excluded region of parameter space is diminished by about
a factor of 10.

I. INTRODUCTION

The detection of about 20 neutrinos over about 10 seconds from supernova SN87a confirmed in broad-brush the paradigm
for core-collapse supernova in which the neutrinos carry away the bulk of the gravitational binding energy ƒ 3 ≠ 5 ◊ 1053

ergs of the neutron star. The time scale associated with this intense neutrino emission is determined by neutrino di�usion in
the hot and dense core of the newly born neutron star called the proto-neutron star[1]. During this phase, the emission of
other weakly interacting particles, were they to exist, could sap energy from the core and reduce the number and time scale
over which neutrinos would be detectable. This allows one to extract useful constraints on the coupling of these hypothetical
particles for masses up to about 200 MeV from the neutrino signal observed from SN87a. Now widely referred to as the
supernova cooling constraint [2], it has provided stringent constraints on the properties of QCD axions [3], the size of large
gravity-only extra-dimensions into which light Kaluza-Klein gravitons could be radiated [4, 5], light supersymmetric particles
such as neutralinos [6], and more recently on the properties of dark photons [7–9].

Observations of galaxy rotation curves, the motion of galaxies in clusters, gravitational lensing, and the remarkable success
of the �CDM model of the early universe (see Ref. [10] for a pedagogic review), combined with the direct empirical evidence
from the bullet cluster [11] indicates the existence of dark matter (DM) which interacts with ordinary matter through
gravitational interactions. This has spurred much recent research in particle physics and a plethora of DM models have been
proposed that also naturally predict non-gravitational interactions. In a class of these models, DM is part of neutral hidden
sector which interacts with standard model (SM) particles through the exchange of light vector bosons (LVBs) that couple
to SM conserved currents [12–15]. Here, DM is charged under a local U(1) and from a phenomenological perspective, it is
convenient to consider two possibilities. One in which the mediator couples to the SM electric charge Q, called the dark
photon “

Q

and is described by the spin-one field A

Õ
µ

. The other in which the mediator couples only to baryon number, which
is sometimes referred to as the leptophobic gauge boson “

B

and is described by the field B

µ

.
At low energy it su�ces to consider minimal coupling of the LVBs to charge and baryon number described by the lagrangian
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which also includes mass terms for the gauge bosons. Of the two LVBs, the dark photon has been studied extensively and is
usually discussed as arising from kinetic mixing of a dark sector gauge boson with the photon [16]. This mixing is described
by the term ‘

Q

F

Õ
µ‹

F

µ‹ in the low energy lagrangian where F

µ‹ and F

Õ
µ‹

are the field tensors associated with the ordinary
photon field and dark photon field, respectively. The Yukawa coupling in Eq. 1 g

Q

= ‘

Q

e where e =
Ô

4fi–

em

is the electric
charge. To simplify notation, and for later convenience, we shall also introduce the parameter ‘

B

and write the Yukawa
coupling of leptophobic gauge boson as g

B

= ‘

B

e.

ú
ermalrrapaj@gmail.com

†
sareddy@uw.edu

ar
X

iv
:1

51
1.

09
13

6v
2 

 [n
uc

l-t
h]

  3
 F

eb
 2

01
6

gQ =
�

4�� �



7

First, we determine the SN87a constraints on “

B

, which is the leptophobic LVB that couples to baryon number. The total
energy loss rate per gram due to “

B

radiation is
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where fl is the matter mass density, T is the temperature and Y

p

= n

p

/(n
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p

) is the fraction of protons. As already noted
we choose fl = 3 ◊ 1014 g/cm3, T = T

SN

= 30 MeV and we set the proton fraction Y

p

= 0.3 to reflect typical conditions
encountered in proto-neutron star simulations[26, 27].

In Fig. 5 we show the constraint on the coupling strength defined as –
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where –
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= 1/137 is the fine structure
constant. We have opted to work with –

B

rather ‘

B

because this is widely used in the context of discussing LVBs that couple
to baryon number. The solid blue curve is obtained by setting Ė

B

(fl = 3◊1014 g/cm3

, T = 30 MeV, Y

p

= 0.3) = 1019 erg/g/s
and solving for ‘

B

for a range of LVB masses m

B

= 1 eV ≠ 200 MeV. For value of –

B

larger than those defined by the blue
curve the supernova would cool too rapidly to produce the neutrino events detected from SN87a. For lighter masses when
m

B

π 1 eV the exchange of the LVB leads to macroscopic forces, collectively referred as fifth forces, and have been probed
by a host experiments (for a review see Ref. [28]). These have strongly constrained –

B

to values that are several orders of
magnitude smaller than can be accessed by the SN cooling constraint. At intermediate values in the range m

B

ƒ few eV≠MeV
neutron scattering and neutron optics provide the strongest experimental constraints [29, 30] and these are also shown in
Fig. 5.

10�6 10�5 10�4 10�3 10�2 10�1 100 101 102 103

m�B [MeV]
10�28

10�26

10�24

10�22

10�20

10�18

10�16

10�14

10�12

10�10

�
B

SRA: Cooling
SRA: Trapping
Neutron Optics [Leeb et al. 1992]
Neutron Scattering [Barbieri & Ericson, 1975]

SN87a Excluded Region

FIG. 5. Cooling and trapping constraints in the parameter space of the LVB that couples to baryon number. The solid blue line is the
lower limit set by cooling, and the dashed blue line is the upper limit set by trapping. Experimental constraints derived from neutron
scattering from Ref. [29] (black dot-dashed curve) and from neutron optics from Ref. [30] (red dashed curve) are also shown.

While it is remarkable that the SN cooling constraint in Fig. 5 is several orders of magnitude more stringent than the
experimental constraints it relies on the assumption that once produced the LVBs can free stream out of the proto-neutron
star. Clearly this will not be true for large values of the coupling –

B

. At these larger values of –

B

LVBs will be trapped in
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SN87a bound on energy loss to exotic particles

Raffelt’s “local” bound: 

E(ρ = 3× 1014 g/cm3, T = 30 MeV) < ERaffelt = 1019
ergs

g s

This bound was found empirically by comparing to a suite of 
proto-neutron star simulations.   

The corresponding bound on the luminosity is 

Lexotic < ERaffelt ×MNS ≃ 2× 1052
M

M⊙

ergs
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matter which is called the APR EoS from Ref. [30]. We
will also employ a more general parameterization of the
neutron matter EoS based on realistic nucleon-nucleon
interactions discussed in [31] to explore important un-
certainties associated with poorly known three-nucleon
forces, and to account for associated uncertainties in the
neutron star structure. For a 1.4 M� neutron star it pre-
dicts radii in the range 11 � 13 km and the dimension-
less tidal polarizability ⇤ is approximately in the range
150� 500.

We will only consider scenarios in which trace amounts
of DM are trapped in the neutron stars’ gravitational field
and restrict the total DM mass M� . 10�2 M� where
MNS is the mass of the neutron star. For M� ⌧ MNS

we can neglect the back-reaction of DM onto the neu-
tron star spacetime geometry as long as the local energy-
momentum of DM is also negligible compared to that of
baryons in equilibrium. Incorporating DM is now fairly
simple. In hydrostatic equilibrium the chemical poten-
tial associated with the conserved charge carried by DM,
denoted as µ� should be a constant. In the presence of
neutron star’s gravitational field we require

µ� = µ̃�(r) exp (⌫(r)/2) = constant , (7)

where µ̃�(r) is the local chemical potential of DM in the
absence of the gravitational field. We obtain the number
density of DM n� by noting that the µ̃�(r) = (@✏�/@n�)
where ✏� is the energy density of DM. Neglecting finite
temperature e↵ects, since thermal energies in neutron
stars are small, the energy density of DM

✏� = ✏
kin

+m�n� +
g2�
2m2

�

n2

� , (8)

where ✏
kin

is the kinetic energy of DM particles. For spin
1

2

fermionic DM

✏
kin

=
1

⇡2

Z pF�

0

p2 (
q
p2 +m2

� �m�) , (9)

where the Fermi momentum pF� = (3⇡2n�)1/3. For
bosonic DM, since bosons occupy the lowest momentum
state, the kinetic energy ✏

kin

⇡ 0. As already noted,
repulsive interactions are necessary to stabilize bosonic
DM, while for fermions the degeneracy energy provides
additional stabilization. For light gauge mediators with
mass m� in the eV-MeV range, their Compton wave-
length become larger than the inter-particle distance and
interactions between DM will be greatly enhanced since
each DM particle can interact with a large number of
neighboring particles coherently. If the dark sector is
strongly coupled with g� ' 1, mediator masses up to
about 10 MeV will be relevant to our study of the tidal
polarizability as we show below.

To determine the density profile of DM inside a neu-
tron star of a given mass we begin by choosing a cen-
tral number density for DM particles denoted by n�(0)
and calculate the corresponding local chemical potential

FIG. 1. Density profile for a hybrid star with M� = 1.7 ⇥
10�4 M�. The dimensionless tidal polarizability ⇤ = 800
for this 1.4M� hybrid star is enhanced from ⇤APR

1.4M� = 260.

m� = 100 MeV and g�/m� = 5⇥ 10�1 MeV�1.

µ̃�(r = 0). Using the metric function for the unper-
turbed neutron star, Eq. 7 allows us to calculate the
dark mater density profile in the local density approx-
imation. The energy density and pressure contributions
due to DM particles at any r can then be found using
the DM EoS specified in Eq. 8. The back-reaction of DM
particles onto background geometry can be incorporated
by using this hybrid EoS and solve TOV equations it-
eratively for fixed nB(0) and n�(0). Since we entertain
only trace amounts of DM a high degree of convergence is
achieved with a few iterations, and corrections due DM to
the baryon profile and gravitational field is indeed negli-
gible. The energy density and pressure profile of baryonic
matter and DM for a 1.4 M� neutron star with baryonic
radius RB = 11.5 km is shown in Fig. 1.

The tidal polarizability of the hybrid star containing
DM is calculated as described earlier using Eqns. 4, 5,
and 6. The dimensionless tidal polarizability for hybrid
neutron stars obtained using representative nuclear EoSs
as a function of the total DM mass M� is shown in Fig. 2.
The results shown are obtained using a bosonic dark mat-
ter model with m� = 100 MeV and g�/m� = 0.1 MeV�1.
The enhancement of ⇤ for the hybrid stars with increas-
ing amount of total DM mass is quite remarkable. The
radius of the dark halo is also shown in the figure. With
the dark halos extending to large radii, hybrid stars re-
spond di↵erently to an external tidal field. Deformations
of the halo dominate and greatly amplify the tidal re-
sponse. This is the main new finding of this study, and it
provides a novel probe of the strongly interacting bosonic
and fermionic light dark sectors.

For reasonable ranges of DM model parameters we find
large changes to ⇤ are possible for M� > 10�5 solar
masses with radii less than 150 km and resulting hy-
brid stars are stable. Results for DM mass m� = 100
MeV and for di↵erent strengths of the self-interactions
are shown in Fig. 3. Results for both fermionic and
bosonic DM are shown, and demonstrate that either

Equation of State of Dark Matter

Energy density:

Large coherent enhancement of interactions when Compton 
wavelength of mediator is larger than the inter-particle separation.    
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matter which is called the APR EoS from Ref. [30]. We
will also employ a more general parameterization of the
neutron matter EoS based on realistic nucleon-nucleon
interactions discussed in [31] to explore important un-
certainties associated with poorly known three-nucleon
forces, and to account for associated uncertainties in the
neutron star structure. For a 1.4 M� neutron star it pre-
dicts radii in the range 11 � 13 km and the dimension-
less tidal polarizability ⇤ is approximately in the range
150� 500.

We will only consider scenarios in which trace amounts
of DM are trapped in the neutron stars’ gravitational field
and restrict the total DM mass M� . 10�2 M� where
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where the Fermi momentum pF� = (3⇡2n�)1/3. For
bosonic DM, since bosons occupy the lowest momentum
state, the kinetic energy ✏

kin

⇡ 0. As already noted,
repulsive interactions are necessary to stabilize bosonic
DM, while for fermions the degeneracy energy provides
additional stabilization. For light gauge mediators with
mass m� in the eV-MeV range, their Compton wave-
length become larger than the inter-particle distance and
interactions between DM will be greatly enhanced since
each DM particle can interact with a large number of
neighboring particles coherently. If the dark sector is
strongly coupled with g� ' 1, mediator masses up to
about 10 MeV will be relevant to our study of the tidal
polarizability as we show below.

To determine the density profile of DM inside a neu-
tron star of a given mass we begin by choosing a cen-
tral number density for DM particles denoted by n�(0)
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µ̃�(r = 0). Using the metric function for the unper-
turbed neutron star, Eq. 7 allows us to calculate the
dark mater density profile in the local density approx-
imation. The energy density and pressure contributions
due to DM particles at any r can then be found using
the DM EoS specified in Eq. 8. The back-reaction of DM
particles onto background geometry can be incorporated
by using this hybrid EoS and solve TOV equations it-
eratively for fixed nB(0) and n�(0). Since we entertain
only trace amounts of DM a high degree of convergence is
achieved with a few iterations, and corrections due DM to
the baryon profile and gravitational field is indeed negli-
gible. The energy density and pressure profile of baryonic
matter and DM for a 1.4 M� neutron star with baryonic
radius RB = 11.5 km is shown in Fig. 1.

The tidal polarizability of the hybrid star containing
DM is calculated as described earlier using Eqns. 4, 5,
and 6. The dimensionless tidal polarizability for hybrid
neutron stars obtained using representative nuclear EoSs
as a function of the total DM mass M� is shown in Fig. 2.
The results shown are obtained using a bosonic dark mat-
ter model with m� = 100 MeV and g�/m� = 0.1 MeV�1.
The enhancement of ⇤ for the hybrid stars with increas-
ing amount of total DM mass is quite remarkable. The
radius of the dark halo is also shown in the figure. With
the dark halos extending to large radii, hybrid stars re-
spond di↵erently to an external tidal field. Deformations
of the halo dominate and greatly amplify the tidal re-
sponse. This is the main new finding of this study, and it
provides a novel probe of the strongly interacting bosonic
and fermionic light dark sectors.

For reasonable ranges of DM model parameters we find
large changes to ⇤ are possible for M� > 10�5 solar
masses with radii less than 150 km and resulting hy-
brid stars are stable. Results for DM mass m� = 100
MeV and for di↵erent strengths of the self-interactions
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neutron star structure. For a 1.4 M� neutron star it pre-
dicts radii in the range 11 � 13 km and the dimension-
less tidal polarizability ⇤ is approximately in the range
150� 500.

We will only consider scenarios in which trace amounts
of DM are trapped in the neutron stars’ gravitational field
and restrict the total DM mass M� . 10�2 M� where
MNS is the mass of the neutron star. For M� ⌧ MNS

we can neglect the back-reaction of DM onto the neu-
tron star spacetime geometry as long as the local energy-
momentum of DM is also negligible compared to that of
baryons in equilibrium. Incorporating DM is now fairly
simple. In hydrostatic equilibrium the chemical poten-
tial associated with the conserved charge carried by DM,
denoted as µ� should be a constant. In the presence of
neutron star’s gravitational field we require

µ� = µ̃�(r) exp (⌫(r)/2) = constant , (7)

where µ̃�(r) is the local chemical potential of DM in the
absence of the gravitational field. We obtain the number
density of DM n� by noting that the µ̃�(r) = (@✏�/@n�)
where ✏� is the energy density of DM. Neglecting finite
temperature e↵ects, since thermal energies in neutron
stars are small, the energy density of DM

✏� = ✏
kin

+m�n� +
g2�
2m2

�

n2

� , (8)

where ✏
kin

is the kinetic energy of DM particles. For spin
1

2

fermionic DM

✏
kin

=
1

⇡2

Z pF�

0

p2 (
q
p2 +m2

� �m�) , (9)

where the Fermi momentum pF� = (3⇡2n�)1/3. For
bosonic DM, since bosons occupy the lowest momentum
state, the kinetic energy ✏

kin

⇡ 0. As already noted,
repulsive interactions are necessary to stabilize bosonic
DM, while for fermions the degeneracy energy provides
additional stabilization. For light gauge mediators with
mass m� in the eV-MeV range, their Compton wave-
length become larger than the inter-particle distance and
interactions between DM will be greatly enhanced since
each DM particle can interact with a large number of
neighboring particles coherently. If the dark sector is
strongly coupled with g� ' 1, mediator masses up to
about 10 MeV will be relevant to our study of the tidal
polarizability as we show below.

To determine the density profile of DM inside a neu-
tron star of a given mass we begin by choosing a cen-
tral number density for DM particles denoted by n�(0)
and calculate the corresponding local chemical potential

FIG. 1. Density profile for a hybrid star with M� = 1.7 ⇥
10�4 M�. The dimensionless tidal polarizability ⇤ = 800
for this 1.4M� hybrid star is enhanced from ⇤APR

1.4M� = 260.

m� = 100 MeV and g�/m� = 5⇥ 10�1 MeV�1.

µ̃�(r = 0). Using the metric function for the unper-
turbed neutron star, Eq. 7 allows us to calculate the
dark mater density profile in the local density approx-
imation. The energy density and pressure contributions
due to DM particles at any r can then be found using
the DM EoS specified in Eq. 8. The back-reaction of DM
particles onto background geometry can be incorporated
by using this hybrid EoS and solve TOV equations it-
eratively for fixed nB(0) and n�(0). Since we entertain
only trace amounts of DM a high degree of convergence is
achieved with a few iterations, and corrections due DM to
the baryon profile and gravitational field is indeed negli-
gible. The energy density and pressure profile of baryonic
matter and DM for a 1.4 M� neutron star with baryonic
radius RB = 11.5 km is shown in Fig. 1.

The tidal polarizability of the hybrid star containing
DM is calculated as described earlier using Eqns. 4, 5,
and 6. The dimensionless tidal polarizability for hybrid
neutron stars obtained using representative nuclear EoSs
as a function of the total DM mass M� is shown in Fig. 2.
The results shown are obtained using a bosonic dark mat-
ter model with m� = 100 MeV and g�/m� = 0.1 MeV�1.
The enhancement of ⇤ for the hybrid stars with increas-
ing amount of total DM mass is quite remarkable. The
radius of the dark halo is also shown in the figure. With
the dark halos extending to large radii, hybrid stars re-
spond di↵erently to an external tidal field. Deformations
of the halo dominate and greatly amplify the tidal re-
sponse. This is the main new finding of this study, and it
provides a novel probe of the strongly interacting bosonic
and fermionic light dark sectors.

For reasonable ranges of DM model parameters we find
large changes to ⇤ are possible for M� > 10�5 solar
masses with radii less than 150 km and resulting hy-
brid stars are stable. Results for DM mass m� = 100
MeV and for di↵erent strengths of the self-interactions
are shown in Fig. 3. Results for both fermionic and
bosonic DM are shown, and demonstrate that either

Profile of a Dark Neutron Star

1.4 Msolar Neutron star with 10-4  Msolar of dark matter.  

Dark matter: m𝜒 = 100 MeV

Interactions: g𝜒/mΦ = (0.5/MeV) or (0.5x10-6/eV)
Ann Nelson, Sanjay Reddy, Dake Zhou, ArXiV:1803.03266
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FIG. 2. Dependence on nuclear EoS. Solid lines are ⇤ and
dashed lines represent radii. All configurations are approxi-
mately 1.4M� within 0.1%. ⇤1.4M� for selected realistic nu-
clear EoSs vary from 150 to 500. Hybrid stars based on these
nuclear EoSs all exhibit R5 growth for large R. Bosonic DM
with m� = 100 MeV and g�/m� = 0.1 MeV�1 is assumed.

strong coupling or light mediator masses can result in
large ⇤ even when only trace amounts of DM with total
mass M� ⌧ MNS is present. Inspiral dynamics can be

FIG. 3. ⇤ increases rapidly with increasing total DM mass
M�. For self-interacting DM with g�/m� > 1 MeV�1, M� >
10�4M� will increase ⇤ above the upper bound (' 800) set
by GW170817.

modeled by the simple approach described by Eq. 2 in
which all finite size e↵ects are incorporated through ⇤
only when the radius of halo is smaller than the orbital
separation

r
orb

' 140

✓
M

M�

◆
1/3 ✓ f

GW

100 Hz

◆�2/3

km , (10)

at frequencies relevant to Ad. LIGO. For this reason
we restrict our study to dark halos whose radii R . 150
km. With this restriction we find that obtaining ⇤ > 800
requires M� & 5⇥ 10�6M�.

Fermion dark halos are larger and have larger ⇤ due
to the additional contribution from the Fermi degener-
acy pressure. For m� = 100 MeV, the di↵erence be-
tween fermions and bosons is modest but the di↵erence
increases rapidly with decreasing m�. We find that for
fermions with m� . 30 MeV, the dark halo and its
tidal polarizability is large even in the absence of self-
interactions. For example, we find that ⇤ = 800 is
reached for m� = 30 MeV at total dark matter mass
M� = 10�4M�, for m� = 10 MeV at M� = 3⇥10�6M�,
and for m� = 5 MeV at M� = 4⇥ 10�7M�. However in
these cases the radius of the dark halo is large: R ' 210
km for m� = 10 MeV, R ' 140 km for m� = 20 MeV,
and R ' 100 km for m� = 30 MeV. A more sophisti-
cated hydrodynamic treatment is needed to study these
situations when the dark halos overlap strongly and this
is beyond the scope of this work.

III. ACCUMULATING DARK MATTER

A key question that remains is how & 10�5 M� of DM
can be trapped by the neutron star. We noted earlier that
the mass of asymmetric DM that can accrete onto neu-
tron stars is much smaller when the ambient DM density
is of the order of GeV/cm3. In a strongly self-interacting
dark matter scenario DM-DM scattering could increase
the capture rate. In addition, the DM distribution may
not be uniform. If dense DM clumps exist, then nearby
neutron stars might accrete large amounts of DM. An-
other possibility is that DM dynamics resulted in small
structures which could seed star formation, thus massive
stars may already contain trace amounts of DM in their
cores, and the neutron stars born subsequent to the su-
pernova explosion would inherit it. Note that microlens-
ing constraints on small objects only rule out extremely
dense objects, and there is plenty of room for clumps of
DM that are much denser than the ambient density but
not dense enough to microlense. These scenarios for how
to get dark matter into neutron stars are complicated and
speculative, and imply that di↵erent neutron stars would
have vastly di↵erent amounts of DM. In contrast, be-
low we shall estimate that light DM with mass less than
a few hundred MeV can be produced copiously during
the first few seconds subsequent to core-collapse super-
nova events, and, if their coupling to baryons is not too
weak, asymmetric capture of dark particles (�’s) versus
anti-dark particles (�̄’s) would result in an ADM-neutron
star hybrid. In this case all neutron stars would contain
a similar amount of DM.
Inside the hot newly born neutron star with a tem-

perature T
NS

' 30 � 50 MeV bremsstrahlung reactions
nn ! nn� and np ! np� produce � particles when
m� is not much larger than about 3T

NS

. In fact, the
most stringent constraint on gB , their coupling strength
to baryons, is obtained by requiring that the total energy
radiated away as � particles does not exceed ⇡ 1053 ergs
[32–34]. Since � can couple strongly to dark fermions, the

For light mediators, only trace amounts are needed   

10-4-10-2  Msolar is adequate
to enhance Λ > 800 !
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tron stars is much smaller when the ambient DM density
is of the order of GeV/cm3. In a strongly self-interacting
dark matter scenario DM-DM scattering could increase
the capture rate. In addition, the DM distribution may
not be uniform. If dense DM clumps exist, then nearby
neutron stars might accrete large amounts of DM. An-
other possibility is that DM dynamics resulted in small
structures which could seed star formation, thus massive
stars may already contain trace amounts of DM in their
cores, and the neutron stars born subsequent to the su-
pernova explosion would inherit it. Note that microlens-
ing constraints on small objects only rule out extremely
dense objects, and there is plenty of room for clumps of
DM that are much denser than the ambient density but
not dense enough to microlense. These scenarios for how
to get dark matter into neutron stars are complicated and
speculative, and imply that di↵erent neutron stars would
have vastly di↵erent amounts of DM. In contrast, be-
low we shall estimate that light DM with mass less than
a few hundred MeV can be produced copiously during
the first few seconds subsequent to core-collapse super-
nova events, and, if their coupling to baryons is not too
weak, asymmetric capture of dark particles (�’s) versus
anti-dark particles (�̄’s) would result in an ADM-neutron
star hybrid. In this case all neutron stars would contain
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Interactions of “natural” 
size produce large Λ

m𝜒 = 100 MeV
g𝜒/mΦ = (0.1/MeV) or (10-6/eV)
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excludes a significant fraction of the DM parameter space
in our simple model. The bounds for bosonic DM de-

FIG. 4. Contours of dimensionless tidal polarizability for
a 1.4 M� hybrid star containing 10�4 M� of bosonic DM.
The parameter space to the left of the red contour labeled
800 is disfavored by the first detection of gravitational waves
(GW170817) from merging neutron stars.

scribed by our simple model are shown in Fig. 4. Here
we have fixed M� = 10�4 M� and varied the DM par-
ticle mass m� and e↵ective coupling strength g�/m� to
obtain the contours labeled by their dimensionless tidal
polarizability. In all cases we have used the APR EoS
to describe the underlying 1.4 M� neutron star. As ex-
pected from the discussion in section II, for fixed m�,
⇤ increases with increasing e↵ective coupling strength
g�/m�.

It is remarkable that models with light mediators are
severely constrained. For example, a model with m� =
100 MeV and m� = 1 eV, requires g� . 10�6. These
constraints should be especially useful since recent ob-
servations of strong absorption of the Lyman-↵ radiation
from some of the earliest stars corresponding to the 21-
centimeter transition of atomic hydrogen around redshift
20 [35] appears to favor light dark matter in the MeV-
GeV mass range and whose interactions (with baryons)
are due to the exchange of much lighter mediators [36].

The bound depends on the total mass M� and we find
the contour for ⇤ = 800 can be approximately fit by

✓
g�

m�/MeV

◆

⇤=800

= 1.6⇥ 10�5

✓
M�

M�

◆�2/3 m�

MeV
.

(14)
In Fig. 5 we show contours of fixed ⇤ for dark fermions

in the model parameter space defined by g�/m� versus
m�. For heavy fermions, where the contribution due
to the Fermi degeneracy pressure is small, the contours
of ⇤ are very similar to those obtained for bosons in
Fig. 4. However it is interesting to note that for light

FIG. 5. Contours of tidal deformability for 1.4 M� hybrid
star containing 10�4 M� of fermionic DM.

dark fermions, with m� . 30 MeV, ⇤ can be larger then
800 even in the absence of strong interactions or light
mediators. This is clearly seen in the behavior of the con-
tours for small values of m� when they plunge to smaller
values of the e↵ective coupling strength g�/m�.
With more detections of BNS and black hole-neutron

star mergers expected we anticipate that these limits on
the tidal polarizability will improve and provide stronger
constraints. There is also the tantalizing possibility that
as the detection sample grows, Ad. LIGO might detect a
larger than expected variability in the tidal polarizabil-
ity for neutron stars implicating that some are endowed
with dark halos. We have proposed a few mechanisms
by which DM can be either produced or accreted in ade-
quate quantities. These warrant further study to obtain
quantitative estimates for the amount of DM accumu-
lated and its dependence on the model parameters.
Finally, we note that in our study we have restricted

ourselves to dark halos whose radii are less than 150 km
to ensure that halos do not overlap during the early, yet
detectable, stage of the merger to ensure that the orbital
evolution can be described by the point particle + tidal
polarizability corrections formulation. Larger halos or
later times in the merger will experience a more complex
hydrodynamic evolution when the halos overlap. This
will require computer simulations to identify observable
signatures, and although this is beyond the scope of our
study we hope our results will motivate numerical rela-
tivists simulating neutron star mergers to include DM.
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Could/should NS contain dark matter ? 

• Supernova can easily produce 10-4 Msolar of < 100 MeV dark matter.

• Coupling to baryons allows for dark charge separation. 

• Dark matter might be clumpy. 

• Dark clumps might seed star formation.   

• Might be the best place to find them ?  



Conclusions 

MeV-GeV dark matter can play a role in mergers. Trace 
amounts of interacting dark matter in the neutron star can 
enhance their tidal polarizability (Λ) to discernible values.      

  

Neutron stars can accrete, inherit, or create their own dark 
matter. Dark matter production during supernova and mergers 
can be significant even for very weak coupling.   

If Ad. LIGO suggests either large Λ or a large variability in Λ, it 
may reveal the particle nature of dark matter - gravitationally ! 

If not, it provides useful constraints on generic dark matter 
models with light mediators.       


